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Abstract
Computational systems biologists create and manipulate computational models of 
biological systems, but they do not always have straightforward epistemic access to 
the content and behavioural profile of such models because of their length, coding 
idiosyncrasies, and formal complexity. This creates difficulties both for modellers in 
their research groups and for their bioscience collaborators who rely on these mod-
els. In this paper we introduce a new kind of visualization (observed in a qualitative 
study of a systems biology laboratory) that was developed to address just this sort of 
epistemic opacity. The visualization is unusual in that it depicts the dynamics and 
structure of a computer model instead of that model’s target system, and because it 
is generated algorithmically. Using considerations from epistemology and aesthet-
ics, we explore how this new kind of visualization increases scientific understanding 
of the content and function of computer models in systems biology to reduce epis-
temic opacity.

Keywords Computer simulation · Epistemology of computer simulation · Epistemic 
opacity · Exemplification · Epistemology of photography · Model-based reasoning · 
Scientific understanding · Scientific visualization

1 Introduction

Computational systems biology is an interdisciplinary field that uses computa-
tional methods to address questions about complex biological systems that are 
not currently answerable using wet lab experimentation. When applied to model 
the dynamics of complex biological systems, computational systems biology has 
enjoyed both predictive and explanatory success. However the models themselves 
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are “epistemically opaque,” not just in the sense that no human could verify all their 
inferences (Humphreys 2004; Lenhard 2018), but also in the sense that their formal 
complexity, long length, and idiosyncrasies in coding make it very difficult for oth-
ers—modellers or biologists—to grasp their content and behavioural profile. This 
makes the models difficult to understand, interpret, and trust.

In a qualitative study of a computational systems biology laboratory, we found 
scientists tackling this version of epistemic opacity by creating visualizations. In this 
paper, we present a novel kind of scientific visualization that was developed by the 
lab, which as far as we know has not appeared in any philosophical literature. The 
visualization is novel in that it is the automatic output of a program designed to 
generate diagrams of the inner workings of computer models. In other words, the 
output visualization is a representation of the computer model, rather than the bio-
logical system being modelled. This kind of visualization is able to resolve the lab’s 
specific problem of epistemic  opacity, in part because the diagram simplifies and 
draws attention to important parts of the model. But the fact that it is algorithmically 
generated is also epistemologically interesting. Usually, such model-diagrams are 
drawn by hand (on computer), and there is no way to verify how well the diagram 
captures the dynamics of the model. We must simply trust its creator. In the case to 
be discussed, we can verify that the algorithm is producing a diagram that accurately 
represents the model  when it is run on simple, well-understood models. When it 
is used on more complex models, the output representations can be checked against 
empirical data (see Sect. 3). Together, these checks  justify scientific confidence in 
the accuracy of such algorithmically produced visual representations.

We begin  our philosophical analysis in Sect.  4  by noting that the visualization 
appears to work as an exemplar (Elgin 2011). Exemplars represent some features of 
a target system, but they also instantiate those same features. For example, a sample 
piece of fabric represents a much larger, unseen piece of fabric as having certain 
features, e.g., having a certain colour and texture. But it also instantiates those same 
features, because the sample piece actually possesses the colour and texture of the 
fabric that it represents.

Because an exemplar instantiates features  of a  target, it provides the user with 
access to those features. This is epistemologically relevant because access to features 
of interest are necessary (if not sufficient) for some kinds of knowledge and under-
standing. For example, if I want to help someone understand why they should pick 
fabric x over fabric y, I can give them a sample of both and let them see that x has 
more desirable qualities than y. Exemplars are therefore useful when trying to help 
someone increase her/his understanding by giving them access to the features of a 
system that we know are instantiated in both exemplar and target. In many scientific 
cases, however, the exemplar “comes first,” in the sense that we have an exemplar 
which purports to instantiate and refer to features of a target system, yet our lack of 
independent access to the target system itself prevents us from confirming that such 
features are indeed instantiated in the target as represented by the exemplar.

In such cases, there can be good reasons for believing that exemplified features 
are indeed as the exemplar represents them to be in the target system, even without 
direct independent verification. This is achieved in the case to be discussed by draw-
ing attention to the fact that the instantiation of certain features in the exemplar is 
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counterfactually dependent on those same features being instantiated  in the target 
system. The visualization to be discussed is produced in such a way that if the model 
did not instantiate those features, they would not be instantiated in the visualization. 
But they do appear in the visualization. This opens our access to (and increases our 
understanding of) the features of the computer model we are interested in.

This is our second epistemological consideration: counterfactual dependence jus-
tifies our use of the visualization as a guide to the computer model. Both photo-
graphs and paintings can exemplify, that is, instantiate and represent features of their 
targets, but because of the (more or less) direct causal dependence of photographs on 
their targets (Walton 1984, 2013), this kind of exemplar generally provides greater 
epistemic access to certain (e.g., visual) features of  the target. As the algorithmi-
cally generated visualizations to be discussed are strongly counterfactually depend-
ent on the models they exemplify, they can be taken as trustworthy guides to those 
models. Through this, the computer-generated visualizations can increase our under-
standing of the models they depict.

In the next section we give some background on the laboratory we studied and 
the specific version of epistemic opacity that the researchers were trying to address. 
Then we present the visualization that was created to address it (Sect. 3), followed 
by a discussion of its epistemology in Sect. 4.

2  Epistemic Opacity In Vivo

The integration of computational and traditional scientific methods has been a driv-
ing force for progress in many scientific fields, as computational methods extend 
the reach of our hands and minds. But they come at an epistemological price: “no 
human can examine and justify every computational step performed by the com-
puter, because the steps are too numerous” (Parker 2014, 142). Normally, to justify a 
logical inference, we check that each step is justified. However, because of the num-
ber of steps in most computer simulations, this is not possible (Humphreys 2004, 
2009). Thus, “a process is essentially epistemically opaque to X if and only if it is 
impossible, given the nature of X [e.g., as a limited cognitive agent], for X to know 
all of the epistemically relevant elements of the process” (Humphreys 2009, 618).

The problem of epistemic opacity is often framed in terms of knowledge. The 
lack of access to all the steps of a computer simulation means we cannot ensure 
its conclusion is justified (at least, not in the usual way), because we cannot verify 
all the premises and subderivations. And if we cannot justify the output, we can-
not know it, insofar as knowledge requires justification. This is a problem that sys-
tems biologists  recognize, but it is not the main problem related to the epistemic 
opacity of computer models. Lacking access to all of the components and steps of 
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a computer model frustrates their ability to explain or predict the output of models, 
and to grasp their empirical content. These goals are best characterized as goals of 
understanding rather than knowledge. Understanding has as yet no accepted philo-
sophical  definition, but there are at least three main brands on offer. Explanatory 
accounts identify understanding with the possession of explanations.1 Manipulation 
accounts locate understanding in the abilities of agents who understand.2 Objec-
tual accounts locate understanding in the grasping of “coherence-making” relations 
between parts of a network of elements.3 In all cases, complete understanding can-
not be achieved if our access to the object of understanding is incomplete.

To see why this is so, we need to say something more about access. There are dif-
ferent kinds of access we can use to gain understanding, including cognitive, causal, 
empirical, and computational. Consider a case where we gain computational access 
but lack cognitive access. It has been proven that only four colours are necessary 
to colour any map of any possible arrangement of countries so that two countries 
sharing a border never have the same colour. This is called “the Four Colour Theo-
rem” (see, e.g., Wilson 2014). The proofs that three colours are not enough and that 
five are enough were completed by human mathematicians. But answering the ques-
tion of whether four colours were enough required a supercomputer. In this case, 
the computer provided  access to this truth about a general property of maps  that 
no human cognitive agent could. Further, through the computer  we gain  compu-
tational  access to the justificatory grounds of the claim that only four colours are 
needed (because the computer has access to all the steps relevant for justification). 
We lack a comparable cognitive access, because no human could observe (or oth-
erwise cognitively process) all the steps performed by the computer that were rel-
evant to justify the inference in a single lifetime. Without such cognitive access, no 
individual human mind can “possess” the justification for why only four colours are 
needed, and so no human can possess the full explanation for why only four colours 
are needed. Therefore no human can have complete understanding in the sense of 
explanatory understanding. (Of course, we could explain why only four colours are 
needed by saying “the machine said so.” But this is very shallow understanding). 
Similar considerations apply for manipulability and objectual accounts of under-
standing: Our lack of cognitive access prevents us from gaining  new abilities to 
manipulate, reproduce, explain, or justify the proof as a whole. We might gain abili-
ties to manipulate (and thus understand) parts of the proof, but this is not what is in 
question. Finally, our lack of cognitive access to the proof prevents our grasping the 
relevant “coherence-making” relationships between the steps of the proof because 
without cognitive access to all the steps of the proof, we cannot grasp the relevant 
(semantic, deductive, inferential, explanatory, etc.) connections between them. We 

3 See Baumberger (2011), Baumberger and Brun (2016), Dellsén (2018), Elgin (2007), Kvanvig (2009), 
Khalifa (2013), Wilkenfeld (2014) and Kelp (2015).

1 See Pritchard (2010, 74), Hempel (1965, 334), Kitcher (1989, 419), Grimm (2008) and De Regt (2009, 
588), Khalifa (2012), Strevens (2013), Hills (2015) and Hannon (forthcoming).
2 See Lenhard (2006),  Stuart (2016, 2018), Wilkenfeld (2013, 2014, 2017) and Wilkenfeld and Hell-
mann (2014).
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do not therefore have full understanding of the proof in the sense of objectual under-
standing either.

The example of the Four Colour Theorem suggests that a lack of cognitive access 
can frustrate all three senses of understanding. It also shows that computational 
access does not substitute for cognitive access. Whether causal, empirical, or some 
other kinds of access are also necessary, we do not say. Our point is merely that a 
complete lack of cognitive access will always prevent us from possessing explana-
tions of the phenomenon in question, from gaining the skills to successfully manipu-
late the phenomenon in question, and from grasping connections relevant for under-
standing between aspects of the phenomenon in question. And this lack of access 
is what is at issue in the computational systems biology lab that we studied. The 
computer models they use are written in code that is idiosyncratically coded and so 
long that it is practically impossible for modellers and other scientists to possess the 
relevant explanations, gain the relevant abilities, or grasp  the relevant connections 
among the parts of the models to secure understanding. Because of this, lab mem-
bers and collaborators are not able to fully understand their own models and even 
less so the ones they do not write themselves.

This opacity of understanding is the kind of opacity that the novel visualization 
aims to assuage. To show this, we will first give some background on the laboratory 
we studied, and then present the problem in the lab members’ own words.

One major goal of systems biology is to discover “how cells compute”; that is, 
how cells “make decisions” about what to do given the state of their environment 
(P1, presentation, 02/02/2016). This is a completely general question that could be 
asked of any given cell. As systems biologists, this lab would like to see “a cata-
logue of the different mechanisms that are at play, [such that we could] look at a 
particular cell and say what the mechanisms are going to be, and predict how the 
cell is going to behave” (P1, interview, 02/04/2016). This could be achieved by rep-
resenting all the signalling pathways in the cell, which are pathways along which 
information travels between the environment, cells, and cell components. Through 
them, the basic activities of the cell, e.g., development, repair and death, are com-
pleted. Computational systems biologists often focus on signalling networks, which 
are large combinations of signalling pathways. The (distant)  end goal is to create 
a library of models that includes worked out signalling networks for all cell types. 
The lab’s Principal Investigator (P1) puts it this way, “We could actually do this, we 
could actually make these models, once and for all—basically they describe what we 
know about biochemistry—and put them in a large library and make models based 
on what we know,” but, “different methods obtain different answers,” and the meth-
ods for coupling their models with the models of others and with the huge amounts 
of data currently spewing from experimental biology laboratories “are still not really 
well worked out...Putting it all together into one thing, one piece of software, or one 
set of software tools that you could use to do this modelling; that’s not happened yet. 
Not by a long shot” (P1, interview, 02/04/2016).

In the meantime, the lab has two proximate goals, both of which concern models. 
The first is to build models of cell components (usually signalling networks) that 
are behaviourally and predictively accurate. To do this, the model must be properly 
“grounded in the data” (P1, interview, 03/03/2016). They have to be behaviourally 
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and predictively accurate because they are also in the service of answering specific 
biological and medical  questions, which in the case of this laboratory, usually come 
from an external collaborator. Of course, the fact that some of the modelling prob-
lems are dictated by external collaborators does not in any way frustrate the general 
goal of creating complete working models of cells.

The second goal naturally complements the first, since there would be no point 
in creating behaviourally and predictively accurate models of cells and cell compo-
nents if no one could understand them. The models must not only predict what cells 
will do, they must also help us to understand how and why the cell does what it does 
in a way that biologists can access, use, and communicate. This is especially impor-
tant in the context of systems biology, which is an interdisciplinary field whose 
practitioners usually divide into modellers with little understanding or experience 
with wet lab experimentation, and bioscientists, who are not typically comfortable 
with computer modelling (MacLeod and Nersessian 2016).

P1 puts it this way,

We’re still very much in the phase of trying to come up with ways to make 
the models accessible for interdisciplinary research, both to computational 
researchers and modellers, but also to biologists. So a lot of the work has been 
recently emphasizing how we make models understandable to everyone…
If you have a bunch of code that describes a model, okay, it’s nice that we 
can write the lines, we have code that can give you a precise model definition. 
[But] you have to write a computer code for each one, and it’s messy and you 
can never figure out what’s in it. Having a [programming] language allows you 
to standardize that to some extent. But it’s still code, and it’s still really hard 
to understand, even for people who are working in the same model. Especially 
for me as the PI of a group, I have students developing those models, I cannot 
go through their code line by line and figure out what’s in every model because 
so much of it is understanding how it all fits together, which is really hard to 
work out, from just looking at lines of code (P1, interview, 02/04/2016).

P4 was a recent Ph.D. student who was leaving for a postdoctoral position during 
our time in the lab. He expressed the same concern with respect to collaboration: 
“There’s this tendency in this field where modelling is treated like a black box. So 
if I, as a modeller, present a model, there’s not much rigour in terms of [a collabo-
rator] asking me, what’s in the model? They just take my word for it. And that’s 
bad, obviously.” What is needed “is a step towards being more open about what’s in 
the model.” This could “bridge the communities” of modellers and experimentalists 
(P4, interview, 02/22/2016).

A natural way for computational systems biologists to do this employs visualiza-
tions. “Visualizing biochemical interactions has a long history of being conveyed 
through symbolic, pictorial and graphical representations,” specifically, pathway 
diagrams representing metabolic and signaling processes. And so, “anytime you pre-
sented a model, you had to build a diagram” (P4, interview, 02/22/2016). This is 
because “there’s something about the visual way of showing something that is very 
powerful. It speaks to an intuition that is not necessarily strictly defined, but it is a 
very powerful intuition nevertheless. There have been a lot of successes in biology, 
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with people thinking in this visual way, right? And so we want people with that 
intuition to be able to relate to models and modelling, and to be able to use models 
and understand what’s in models.” Even if a model is a black box, computationally 
speaking, it “shouldn’t be treated as a black box, because if a collaboration should 
work, everybody should know what’s in it. I think a visualization tool goes a great, 
long way towards not treating a model like a black box.” The right visualization 
could help collaborators “see what’s in it, without having to read the whole thing” 
(P4, interview, 02/22/2016).

The use of visualization is so attractive that it can seem like the only viable path 
to increasing understanding. Thus three lab members write: “Visual representa-
tions are necessary to understand individual rules as well as analyze interactions 
of hundreds of rules, which motivates the need for automated diagramming tools” 
(our emphasis, publication preprint, accessed 09/09/2016). But what kind of visu-
alizations should be used? Given the central role of pathway diagrams in biologi-
cal reasoning, it has been natural    to visualize models using this kind of diagram. 
Producing diagrams that use the same visual conventions that bioscientists are used 
to should facilitate collaborator understanding of how the model produces its results.

This brings us to an important epistemological point. Until now, when a compu-
tational systems biologist presented the results of their work accompanied by a visu-
alization, that visualization was always drawn by hand. It was always a human-made 
interpretation of the structure of that model. This opens the door to a certain kind of 
skepticism, as “there’s no relationship to the model. I could give you a crap model, 
and say this is the diagram, and you will just have to believe me. There’s no relation-
ship to the actual code” (P4, interview, 03/01/2016). To avoid this kind of situation, 
the lab wanted to create an open-source visualization tool that would automatically 
produce a visualization for any computer model (written in a specific open-source 
coding language) that could be formally and empirically justified. This would alle-
viate skepticism about the accuracy of model visualizations, which are seen as the 
only serious contender for reducing epistemic opacity.

Given this situation, P1 told us that developing algorithmically produced visual 
representations of the models “is really one of the core things that we’re working on, 
right now” (interview, 02/04/2016). It is “important for us, it helps us communicate 
a lot better, it makes our work more exciting, it makes it easier for us to read our own 
work” (P1, interview, 02/04/2016). Here is how they achieved this.

3  From Diagrams to Models to Hairballs (and Back)

The inputs and outputs of computational systems biology research are often 
pathway diagrams. At the beginning of a project, they are typically given a path-
way  diagram by their collaborator that encodes what the experimental collabo-
rator knows, or is interested in, about a given system. These pathway diagrams 
are most often partial and insufficient for building a computer model of the sys-
tem. The modeller needs to build the model from the diagram through searching 
the experimental literature and databases for what is known more broadly about 
the system (binding affinities, reaction speeds, etc.), in an iterative processes of 



94 M. T. Stuart, N. J. Nersessian 

1 3

building the model (Chandrasekharan and Nersessian 2015). When complete, 
they return new diagrams to their collaborators that represent and summarize 
the  results of  their modelling. Even though a computational modeller will not 
be able to go through and understand all the code of someone else’s model, they 
want to feel confident that everything produced by the model is the result of trans-
parent code, including the final diagram. Here is how the lab’s new algorithm 
accomplished this, using a particular example.

Figure  1 presents a diagram of a biological model of a signalling pathway. 
Rapamycin is a drug that can initiate autophagy in a cell, which is the process 
by which a cell deconstructs itself. Autophagy is important because it prevents 
toxic elements of the cell’s interior from spilling into the surrounding environ-
ment on cell death. It does this by deconstructing those elements so that they can 
be employed by other cells (see e.g., Mizushima and Komatsu 2011). It would 
be useful to create a drug that would initiate this process in a given cell, so that 
certain unwanted cells, e.g., cancer cells, could be targeted. These cells would 
then deconstruct themselves without posing any threat to nearby cells. Figure 1 
presents our knowledge of the system gained through experimental manipulation.

There are a number of conventions that help us understand the diagram. Green 
arrows represent activation (usually by phosphorylation), while red blunted arrows 
represent inhibition. Two red blunted arrows in a row become green because two 

Fig. 1  Pathway diagram of Rapamycin’s effects, drawn by hand (on a computer) by Szymańska et  al. 
(2015)
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inhibitions have the same effect as an activation. A black blunted arrow represents 
negative feedback. A biologist looking at this diagram for the first time would 
be aware of most of the molecules by name, and would know the roles played by 
each of them in the cell. They would therefore quickly see how Rapamycin leads 
to autophagy by inhibiting mTORC1 (mTORC1 inhibits ULK1, but with the addi-
tion of Rapamycin this inhibition ceases, which allows ULK1 to activate AMBRA1, 
which leads to autophagy).

The lab created a computer model of this signalling network. The model is com-
posed of sets of rules that govern transformations between states in the model, in a 
way that is meant to accurately predict what happens in real cells. The model’s rules 
can be converted into a visual “reaction network,” as displayed in Fig. 2.

The model contains 7 molecule types, 31 rules, and 6581 possible reactions, all 
of which are visualized here in Fig. 2. This is not a visualization of the signalling 
network, but of the reactions that can take place in the computational model of the 
signalling network. That is, it is a representation of the modal space of the computa-
tional model, not of the real-world target system.

P4 describes Fig. 2 as a “hairball.” While it captures the full set of interactions 
possible within the model, it is impossible to see what is going on. It tells us nothing 
about the contents or dynamic structure of the model. Cognitively speaking, it is no 
more digestible than a hairball. As P4 puts it, “Biological understanding exists at a 
particular resolution…Biologists don’t think at that [hairball] level, at that size, they 
think at a much coarser level than that” (P4, interview, 02/22/2016).

To address this, P4 in collaboration with P1 and other lab members, built a 
program that would take the above reaction network and distill it via a number 
of steps into a comprehensible visualization that would expose “the guts of the 

Fig. 2  Reaction network of the computational Rapamycin model
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model” (P4, interview, 02/22/2016). The first step in this process is to create a 
“regulatory graph,” as seen in Fig. 3.

This graph has the same molecule types and rules as the reaction network, 
but not all possible reactions are shown. Instead, the program creates a number 
of “regulatory relationships” that capture the overall behaviour of the rules that 
comprise the model. At the same time, the reaction network is converted into a 
graph, in which the nodes and edges of Fig. 3 replace the reactions of Fig. 2. The 
nodes represent states or rules, and the edges represent “influences” that trans-
form those states/rules into other states/rules. Information is lost in the transfer 
from Figs.  2 to 3 only in the sense that individual reactions are no longer  pic-
tured. But that information is retrievable for the program, which can be run back-
wards to recreate the reaction network from the regulatory graph.

There is still a problem with this diagram, however, which is that there are too 
many nodes and edges. For a diagram like this to express a kind of overall “flow” 
among elements that is graspable by a human mind, there have to be less elements.

Consequently, the graph must be simplified. This is achieved through three pro-
cesses: “pruning,” “grouping,” and “collapsing.” In the pruning phase, a number 
of nodes and edges in the graph are chosen by the program to be foregrounded as 

Fig. 3  Regulatory graph of the computational Rapamycin model
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significant by reducing the number of redundant or unnecessary nodes, called “back-
ground nodes.” Background nodes are defined mathematically, but intuitively, they 
are nodes that have little influence on the overall function of the model. They might 
be free binding sites that are nowhere activated in the model, or redundant bindings 
that are already accounted for somewhere else. The definition of a background node 
can be altered or overridden by the user if she or he wants to include more or less 
background nodes. From 31 process nodes (hexagons), 42 state nodes (rectangles) 
and 161 edges (arrows), we obtain a new graph through pruning that has only 14 
process nodes, 18 state nodes, and 50 edges, as seen in Fig. 4.

From here, certain elements of the graph are grouped together. This is possi-
ble because there are always groups of rules that can be treated as functioning as a 
single rule. Equally, molecules (both in reality and in models) often have multiple 
phosphorylation sites that can be treated for the purpose of the regulatory graph as a 
single phosphorylation state. Through grouping, the program takes Fig. 4 and turns 
it into Fig. 5.

Fig. 4  “Pruned” regulatory graph with background nodes eliminated
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This graph is then “collapsed.” The collapse function is again mathematically 
defined, but intuitively, what it does is allow us to treat an entire group of nodes as 
a single entity (whose input/output function is the same as that of the entire group 
when taken as a whole), only when this does not affect the overall functioning of 
the graph. Applying this to Fig. 4, the outcome is a graph with 11 process nodes, 10 
state nodes, and 33 edges, as depicted in Fig. 6.

Finally, the graph is annotated with the labels and diagrammatic conventions cus-
tomary for biologists, including traditional arrow types and colours (Fig. 7).

As a reminder, the purpose of this exercise was not to see if a computer could rec-
reate Fig. 1. The task performed by the computational systems biologists was to take 
Fig. 1 and use it to create a computer model capable of accurately simulating and 
predicting real empirical data. This they did. What the new piece of software does 
is create a visualization of the inner workings of that computer model. To see that 
progress has been made, note that there are important differences between Figs. 1 
and 7, including additional arrows in Fig. 7 that do not exist in Fig. 1. These arrows 
represent previously unknown  signalling pathways in the system. When inves-
tigated empirically, these pathways were found to be present in the target system. 
The computer model therefore contains novel information about the actual system’s 
behaviour, and the visualization program helps collaborating biologists understand 
that new information. We take this to be a genuine scientific and epistemological 
achievement, both in the production of new knowledge and in the reduction of the 
kind of epistemic opacity that would have limited how well the computer model and 
its results could be understood by collaborators.

We now turn to a philosophical discussion of how this automated visualization 
program produces new understanding.

Fig. 5  Regulatory graph with elements grouped
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4  Peeking Inside the Black Box

The automated model visualization program  described above reduces epistemic 
opacity by opening up epistemic access to the model. But how does it open epis-
temic access, and how does that access lead to new understanding? We find two 
accounts in the literature helpful here. Their combination, we think, explains how 
the visualization achieves what it does. The first is Catherine Elgin’s account of 
exemplification. The second is Kendall Walton’s account of photographic snapshots.

For Elgin, exemplars are objects that simultaneously represent some features of 
a target while instantiating those features. An example is a sample of fabric, which 
represents the colour and texture of a larger piece of fabric that you might want to 
buy and make into, e.g., an article of clothing. At the same time, the fabric sam-
ple is the colour and texture of the unseen fabric it represents. That is, it instan-
tiates those features of the fabric. According to Elgin, many inferences (scientific 
and otherwise) increase understanding by means of exemplification. Laboratory 

Fig. 6  Collapsed regulatory graph
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experiments, for example, are performed on artificially constructed systems that rep-
resent real world systems while also instantiating many features of the represented, 
real world systems. For example, the Miller–Urey experiment introduced electrical 
currents to pure samples of chemical elements contained in a sealed glass container. 
By this method, certain amino acids which we take to be important building blocks 
for life were created (Elgin 2014). The chemical elements in the containers were all 
thought to be present on prebiotic Earth, and the electrical discharges represented 
lightning, which was also present on prebiotic Earth. On interpretation, this achieve-
ment represents any and all instances in the history of the Earth where those same 
elements and events produced those particular amino acids. But the experiment 
doesn’t merely represent cases where certain elements and events produced certain 
proteins, it actually is a case where certain elements and events produced certain 
proteins. In other words, it instantiates features of any such events on Earth, features 
such as containing certain elements combined in certain ways and producing amino 
acids. This provides epistemic access to those features. Through exemplification we 

Fig. 7  Regulatory graph converted into standard conventional format
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can come to understand one way life may have begun on Earth by understanding 
how certain elements led to certain proteins in the lab, just like we learn about the 
softness of a piece of fabric we’ve never seen by feeling a sample of it. Instantiation 
teaches us about certain features, representation transfers that new understanding to 
the target.

Thought experiments are another kind of scientific inference that can proceed 
by exemplification (Elgin 2014). Here, however, not all the relevant features can 
be instantiated. While the nitrogen in the Miller–Urey experiment really is nitro-
gen (and therefore has all the material features of real nitrogen), the nitrogen in 
our minds is not really nitrogen (and therefore does not have all the material fea-
tures of real nitrogen). Thus while imaginings can represent nitrogen, they cannot 
instantiate all the features of nitrogen. So how do we learn from thought experi-
ments and computer simulations, which cannot instantiate all the features of their 
target systems? Elgin’s reply is that even if such representations cannot instantiate 
all the features of their target systems, they can still instantiate some of them, and 
these might be the relevant ones for inquiry. For example, the nitrogen atoms in our 
minds do not literally have 7 protons in their nuclei because the nitrogen atoms are 
thought-tokens, and thought-tokens are either immaterial (and so, are not made of 
protons) or they are patterns of firing among neurons (and so they are “made of” 
the wrong number of protons). But in a different sense, the nitrogen atoms in our 
minds do all have 7 protons in their nuclei because if they had some other number of 
protons, we would be imagining a different element. Real nitrogen atoms are com-
posed of nuclei that have 7 protons, while the nitrogen atoms in our minds are also 
composed (in thought) of nuclei that have 7 protons. Thus “having 7 protons” is a 
feature instantiated by both real nitrogen atoms and by our mental representations 
of nitrogen atoms. Just as Sydney Carton in A Tale of Two Cities really is altruis-
tic, even though he is fictional, the nitrogen atoms in our mental models really do 
have 7 protons (Elgin 2014, 228–229).4 This applies to the kind of visualization pre-
sented above because the epistemologically relevant features can be found in both 
the model and the  visualization. For example, the relationship between mTORC1 
and ULK1 is described by the biochemical notion of mutual inhibition, in which 
two things reduce the activity of one another. Tokens of mTORC1 and ULK1 are 
related by mutual inhibition in the real system, but also in the computer model 
and diagram because in all three cases that is the relationship that holds between 
tokens of mTORC1 and ULK1. The tokens of mTORC1 and ULK1  in the com-
puter model can be “active” or “inactive,” and they regulate each other’s activity by 
mutual inhibition. In the diagram, conventions of representation tell us that elements 
like mTORC1 and ULK1 are always active unless inhibited, and in this diagram, 
these two components of the pathway mutually inhibit one another. Thus, while the 

4 Elgin sometimes uses a different strategy that may amount to the same thing, using the notion of “met-
aphorical exemplification,” that is, non-literal exemplification. Thus, a lifeless painting can instantiate 
optimism, and a mathematical proof can instantiate elegance (Elgin 2002). The painting made of canvass 
and paint has no feelings, so it is not literally optimistic. But we agree that it’s an optimistic painting, so 
it instantiates optimism “metaphorically.” This argument depends on considerations about the difference 
between what is metaphorical and what is not, which we will not go into here.
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molecules we find in the model, diagram and real world are not “made of the same 
stuff” and will not have every feature in common, the tokens of mTORC1 stand in 
the same relation of mutual inhibition to tokens of ULK1 in all three cases.

Exemplification provides epistemic access because instantiating feature p is hav-
ing feature p, and while we may not have direct cognitive access to all of the impor-
tant features of the computer model, we do have access to the visualization of the 
model, which has and represents certain important features. This provides us with 
access  to those features, which is important for increasing our understanding. But 
there is a problem. Many of the exemplars we’ve discussed so far are what might 
be called “established” exemplars (EEs). That is, they are all created in the follow-
ing way: we want to help others understand some features of a system, so we create 
an exemplar that has and represents these features. The fabric sample has certain 
features people are interested in when buying fabric (colour and texture), and we 
can ensure that those  features instantiated in the sample are the same as those in 
the fabric in the warehouse, e.g., by cutting the sample from the fabric. In our case, 
however, we have what might be called a “potential” exemplar (PE). In a PE, the 
visualization instantiates certain features and represents the computer model as hav-
ing those features, but it isn’t clear if those features really are present in the com-
puter model. The reason for this is that we did not create the visualization as a way 
to explain something we already understood. Instead, we created it to give ourselves 
understanding of something we do not currently understand (the computer model). 
We thus need a way of guaranteeing that the feeling of understanding we get is a 
mark of genuine understanding.

One way to get such a guarantee is by external validation. For example, suppose 
a doctor performs an X-ray on your foot. The X-ray shows that your toe is broken. 
One way you can be sure that the X-ray accurately represents the state of your foot 
is by cutting your foot open and checking to see if the bone is actually broken just 
as the X-ray indicates. After having gone to this great effort, the PE becomes an EE 
because we now know  that the same features (e.g., a break two-thirds of the way 
down the phalange) are instantiated in both the real system (your foot) and the exem-
plar (the X-ray).

But not all cases require external validation. Even for the X-ray, there are good 
reasons to think that the image exemplifies the brokenness of your toe without hav-
ing to cut open your foot and look at your bones. One reason, in this case, comes 
from our theoretical knowledge of X-ray machines. If your toe was not broken, the 
X-ray image would not (typically) show a broken toe. The features of the exem-
plar are counterfactually dependent on the state of your foot. Call such exemplars 
trustworthy potential exemplars (TPEs). They are not established when they are not 
externally validated, but there is nonetheless reason to believe they would be vali-
dated if checked against the target system, so they are better than mere PEs.

Sometimes, external validation is not possible. For example, dinosaur bones in a 
museum represent and instantiate certain features (e.g., tooth length) of a creature 
that lived a long time ago. We cannot go back in time to verify that the dinosaur 
whose bones we are looking at now had teeth of that length. But we don’t have to, 
because the teeth we are looking at now, while different (due to natural processes 
like material degradation) from the teeth the creature had at the time of its death, 
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are counterfactually dependent on the teeth of the living dinosaur. If the living 
dinosaur had shorter teeth, the teeth we are looking at now would be shorter. The 
dinosaur skeleton is thus also a TPE for some features of the living dinosaur that it 
represents. What is crucial here is the possibility of exemplars that cannot be estab-
lished through external validation, but still stand as a trustworthy guide to their tar-
gets. TPEs allow us to understand new things about the system, without the need for 
external validation.

Thus, when we have a TPE, we can be relatively confident that it instantiates the 
relevant features of the target system, and this opens epistemic access to the target. 
At this stage, we can possess explanations of the model in terms of those features, 
successfully manipulate the model by learning to  manipulate those features, and 
grasp the relations between the features. In other words, all three kinds of under-
standing can be gained through this sort of epistemic access, if the diagram is a TPE 
and not a mere PE. Since one thing that can make a PE into a TPE is counterfactual 
dependence of the exemplar  on the target, we should discuss in more detail how 
this might obtain for visualizations in particular. A good start is Kendall Walton’s 
account of snapshots.

Snapshots are photographs that intend to depict the objects in a photograph, while 
at the same time standing in an epistemically privileged (because causal) relation 
to those objects. It is thus a two-pronged account, like Elgin’s exemplification. A 
photograph of Judy Garland depicts Judy Garland, in the sense that it is meant to 
“induce viewers to imagine” that they are seeing Judy Garland. It tells us imagine 
that our visual experience of the picture is a visual experience of Garland (Walton 
2013). But the picture also stands in a photographic relation to Judy Garland. “The 
photographic relation is a causal relation of a certain kind. It has nothing essen-
tially to do with viewers’ experiences, and it does not have a normative dimension 
like that of depiction” (ibid). Counterfactual dependence is important to the photo-
graphic relation. If Judy Garland wasn’t smiling when the shutter snapped, the photo 
would look different. This counterfactual dependence justifies inferences about the 
subject of the photograph, and this is why untampered photos (and videos, etc.) 
are admissible as evidence in court: they are counterfactually dependent on their 
objects, which is evidence that the objects depicted were as they appear to be in the 
photograph. Snapshots are photographs that depict an object (induce us to imagine 
it) while at the same time being counterfactually dependent on the features of that 
object.

The scientific visualization described in Sect.  3 is a snapshot in the sense that 
it is a depiction of the elements and dynamics of a computer model, and it is also 
strongly counterfactually dependent on that model. Being a depiction, we are invited 
to imagine that we are looking at the elements and dynamics of the model. In addi-
tion, if the computer model were relevantly different, the resulting visualization 
would also be different. This counterfactual dependence is not causal, but algorith-
mic. We see no reason to limit the kind of trustworthy counterfactual dependence to 
causal dependence; what matters is that the snapshot carries information about its 
target via counterfactual dependence.

The strength of the counterfactual dependence matters. In the case discussed in 
this paper, the counterfactual dependence is very strong. Unlike a camera, which 
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relies on light moving through a medium, there is nothing “between” the model and 
the diagram, and so there is nothing to obscure  the sensitivity of the visualization 
to changes in the target system. The probability of misidentifying noise as signal 
(or vice versa) is very low. And the reliability of the process that creates the visu-
alization from the model can be checked against simple models for which epistemic 
opacity is not an issue. That is, we can build a very simple model we understand 
well, and then run the algorithm and create a visualization, and ensure that it coheres 
with what we know to be true of the model. External validation is possible in these 
cases, and we confirm that the PE is actually an EE by comparing the visualization 
directly to the model. This increases our trust in the algorithm for cases in which 
we cannot provide this kind of external validation. Finally, unlike a camera, we can 
run the program backwards on any visualization it produces and retrieve the origi-
nal model. This gives us another way to verify the accuracy of the process. So the 
counterfactual dependence is strong, the reliability of the method can be checked in 
two directions, and users of the diagram are in a position to know all of this, which 
contributes to the algorithm’s epistemological trustworthiness.

These considerations justify our confidence in the visualization as a source of 
information about the elements and dynamics of computer models in computational 
systems biology. And this is often what we want from representations in science: to 
provide reliable guides to features of target systems. It suggests that what we learn 
about the relevant features exemplified by the diagram will be true of the computer 
model. For example, when biologists noticed the extra signalling pathways in Fig. 7 
that were not present in Fig. 1, they gained evidence that the computer model also 
included such signalling pathways. This enabled the scientists to possess explana-
tions of the model’s output and behaviour in terms of those pathways (explanatory 
understanding); to gain new abilities concerning those pathways, like the abilities 
to  produce new explanations  and  predictions about the model’s behaviour, and to 
engage in meaningful conversation about the model that would not have previ-
ously been possible (manipulability understanding); and to grasp the coherence-
making connections among aspects of the model’s output and behaviour, e.g., the 
connections among those new pathways, other pathways, and the molecules in the 
model (objectual understanding). Thus, through exemplification and counterfac-
tual dependence, the visualization is able to provide understanding and reduce the 
epistemic opacity of computer models in systems biology. Because understanding 
requires epistemic access, and epistemic opacity bars this access, restoring that 
access can increase understanding.5

5 Of course, new knowledge might be produced as well. For example, the diagram can provide warrant 
for claims about the existence of those new pathways in the model’s target system since (a) the diagram 
is counterfactually dependent on the computer model and (b) we have independent evidence that the 
model is accurate, so we can infer that this feature of the model is at least plausibly also instantiated in 
reality. But even in cases where no new knowledge is produced (e.g., there are no new pathways), we can 
still gain new understanding of the computational model through the diagram.
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5  Conclusion

The kind of algorithmically generated model-visualization described in this paper 
can be used to address the problem of epistemic opacity for black box models of 
large signalling networks. We can expect more visualizations of this type to be 
created and used with other kinds of computational models in systems biology. 
And insofar as other scientific domains use relevantly similar models, perhaps 
algorithms like this one could also  be helpful in reducing epistemic opacity in 
those domains.

One question to ask concerns the qualities that make certain instances of such 
diagrams better than others. According to P4, “the end goal would be to make an 
image, show it to a biologist, and they think you drew it by hand.” Achieving this 
requires more than mere counterfactual dependence: it requires knowing what 
features of diagrams best foster human understanding. As P4 notes, however, 
understanding is “a little wishy-washy.” “What you’re trying to do is you’re trying 
to promote understanding. There’s not really a theory of how to promote under-
standing. Especially in the visual thing” (P4, interview, 02/22/2016). Philoso-
phers are working on understanding scientific understanding and how diagrams 
appeal to imagination to produce it (see e.g., Baumberger forthcoming; de Regt 
2009, 2017; Elgin 2017; Meynell 2018; Stuart 2016, 2017, 2018). While we wait 
for such accounts to be fleshed out, however, there are still things we can say now. 
For example, effective diagrams employ space, colour and dimension in ways that 
appeal to basic human intuition (see, e.g., de Regt 2014; Gansterer 2011; Meynell 
2018; Nersessian 2008; Tufte 2001). In addition, they portray their targets using 
conventions that are familiar (or could become familiar) to the epistemic com-
munity. And while diagrams can exemplify many different features, they should 
exemplify those features of the model that are important for giving explanations, 
gaining new abilities, and grasping the connections between the elements of the 
model.

In sum, our investigation into the practices of this computational systems biol-
ogy lab has shown that scientists can eliminate some of the epistemic opacity that 
accompanies computer models without finding a way to lay bare all the inferential 
steps made therein. They can unlock epistemic access to significant features of 
computer models, including their elements and dynamics, by means of an image. 
This counts, we think, as a solution to one version of the problem of epistemic 
opacity of computer models in science.
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