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Abstract When philosophers discuss the possibility of machines making scientific
discoveries, they typically focus on discoveries in physics, biology, chemistry and
mathematics. Observing the rapid increase of computer use in science, however,
it becomes natural to ask whether there are any scientific domains out of reach
for machine discovery. For example, could machines also make discoveries in
qualitative social science? Is there something about humans that makes us uniquely
suited to studying humans? Is there something about machines that would bar them
from such activity? A close look at the methodology of interpretive social science
reveals several abilities necessary to make a social scientific discovery (such as
cognitive empathy and the ability to assign meaning) and one capacity necessary
to possess any of them is imagination. Novel and significant interpretations required
by social scientific discovery require imagination. For machines to make discoveries
in social science, therefore, they must possess imagination algorithms.
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The question of whether machines could discover arose early in the history of arti-
ficial intelligence.1 Since then, machine learning algorithms have been developed,

1Especially in the work of Herbert Simon and his students. See e.g. Newell, Shaw, and Simon
(1958), Simon (1977, 1979), Bradshaw, Langley, and Simon (1980), Bradshaw, Langley, and
Simon (1983), Langley, Simon, Bradshaw, and Żytkow (1987), Langley and Jones (1988), Shrager
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and there are now many putative examples of machine discoveries, for example: the
BACON program that discovered Kepler’s third law, Coulomb’s law and Ohm’s law
(Langley, 1981); the KnIT program discovering features of a molecule important
for cancer-prevention (Spangler et al., 2014) and the Automated Mathematician
discovering Goldbach’s conjecture (Lenat, 1982) (see also e.g. Giza, 2002; Lane,
Sozou, Addis, & Gobet, 2014).

A common way to frame the possibility of machine discovery has been function-
alist: if a machine can carry out some crucial set of processes, such as generating
hypotheses, performing experiments, writing papers that pass peer-review, etc., it
can discover. The thought is that scientists make discoveries with certain methods,
so if machines can use those same methods, they can discover. This might be an
effective framing if we want to suggest that machines can make some discoveries
as opposed to none at all, but it will not tell us much about the limits of machine
discovery. By analogy, teaching a computer to buy a canvass, paint with certain
brushstrokes and sell the painting to a gallery might justify the claim that machines
can do some art, but this would not tell us what kinds of art machines are capable of
making.

A different kind of approach (call it “transcendental”) would seek a set of nec-
essary conditions for scientific discovery instead of sufficient ones. This approach
presupposes that we do discover, and asks what makes this achievement possible.
Applied to the case of machine discovery, we ask what capacities machines must
possess as agents in order to discover in science. This begins in a piecemeal way
since the features necessary for discovery in one domain might not be necessary in
another, but the full account should provide the (perhaps disjunctive) combined set
of features necessary for discovery in all domains of science. Since I am interested
here in the limits of machine discovery, I propose we look at the social sciences,
where no documented cases of machine discovery yet exist.

I argue in Sect. 4.1 that we should characterise discovery as an action (part of a
discovery event). In Sect. 4.2, I develop this characterisation of discovery. In Sect.
4.3, I extract what is necessary for agents to discover in social science by an analysis
of social science textbooks and methodology papers. In Sect. 4.4, I show that the
ability to imagine is necessary for social scientific discovery, and I conclude that
machine discoverers must possess imagination algorithms if they are to discover in
the full sense of scientific discovery (which must include social science).

and Langley (1990), Langley, Shrager, and Saito (2002), Langley (2000), Dzeroski, Langley, and
Todorovski (2007).
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4.1 Reasons to Pursue an Action-Centered Account
of Discovery

There are many ways of characterising scientific discovery,2 but each of them
portrays discoveries either as events or objects. According to the first, the process
or act of discovery is emphasized. Think of Newton’s discovery of universal
gravitation: we typically emphasize what Newton did, and how he did it, rather
than focusing on gravity itself. According to the second, a particular object is
emphasized. Think of penicillin; we talk about what it is and why it is important.
We should not claim that only one of these is the “true” sense of discovery, that
would be to introduce a false dichotomy. Inquiry into both processes and products
can illuminate the phenomenon of scientific discovery. Nevertheless, I will focus on
discovery as an event for three reasons.

First, objects of discovery are not counted as discoveries until there is some
recognition of those objects being discoveries, and this recognition takes place
at a certain time. It makes little sense to say that penicillin was a discovery in
30,000 BCE, or that it was always a discovery. The number 0, democracy and
Snell’s law do not exist in time, although they seem to have been discovered at
certain times. The temporal element of objectual discoveries suggests that we might
take discovery events as conceptually primary to discovery objects, since events can
be indexed to times and this is not true of all objects of discovery.

Second, the temptation to think of discovery as objectual is at least partially a
result of scientific rhetoric. Since the foundation of the Royal Society, science has
been portrayed as objective by removing the traces of particular agents (see, e.g.,
Schaffer & Shapin, 1985). Discoveries are made by science itself, that is, by no
one in particular, in order to distance those discoveries from the doubts that might
otherwise attend them if they were portrayed as products of a practice carried out
by biased and imperfect humans. This rhetorical move masks important agential
aspects of science, and we need not take the mask for the face.

Finally, the products of discovery can be anything from bacteria to equations to
methods, and it seems far more difficult to look for commonalities in the set of all
things that have been (or could be) discovered and ask if machines could produce
them, than to ask what sort of action a discovery is and whether machines could be
the sort of agent to perform it.

So, what kind of action is discovery?

2See e.g. Kuhn (1962), Achinstein (2001), Hudson (2001), McArthur (2011), Schindler (2015) and
the entries in Schickore and Steinle (2006). See Schickore (2014) for an overview.
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4.2 Elements of the Discovery Event

I propose we distinguish the following elements of a discovery event: (a) an agent
(who discovers), (b) an object of discovery (that which is discovered), (c) a trigger
event (that which prompts the discovery) and (d) an act of discovery (the agent’s
interpretation of the object, prompted by the trigger event).

The agent can be an individual or a community, whose mind can be extended or
distributed. The object of discovery can be an idea, a fact, a value, an entity (concrete
or abstract), a process, a problem, a kind, an ability or a method. Anything, really.
The trigger event often takes the form of an observation, inference, experiment,
simulation, model manipulation, statistical analysis, or combination of these. It need
not be intentional and can even be accidental. Generally speaking, any event can be
a trigger event. Finally, the act of discovery is the agent’s interpretation of the object
of discovery, prompted by the trigger event. In the simplest cases, this interpretation
is a mere categorisation of the object of discovery. We must not confuse the act of
discovery with the trigger event, however. The discovery of penicillin was not the
Petri dishes left uncovered, or the mould growing on the dishes, or Flemming’s
walking into the lab and seeing the area surrounding the mould in which there
was no Staphylococcus. All of these objects and events jointly constitute the trigger
event, and the discovery of penicillin must be different from this event because we
want to be able to praise a discoverer for their discovery, and we cannot do this if the
discovery simply is the trigger event, which need not include the intentional action
of any agent.

Interpretation is therefore the key action of discovery. I propose four specifica-
tions of interpretation that when satisfied (and combined with the other elements)
yield what I think is a plausible explication of scientific discovery.

First, the interpretation of the object of discovery has to be novel – whether to
the agent (“personal discovery”) or to the agent’s epistemic community (“historical
discovery”) (see Boden, 2004. Novelty is also a requirement for Kuhn, 1962;
Schindler, 2015; and Hudson, 2001). An agent or community who discovers the
same thing again still discovers it, but after the first instance we say that they
rediscover it. Something may be a personal discovery for an agent though only
a rediscovery for her epistemic community. And one epistemic community can
rediscover what another has discovered already. The same discovery can therefore
be a discovery or a rediscovery depending on how broadly we understand the agent’s
epistemic community. Lastly, we should note that an interpretation can be more or
less novel.

Second, for an interpretation to count as a scientific discovery, it must interpret
the object of discovery as the solution to a scientific problem. This is too loose,
however, because a scientist who learns that her assistant has been stealing lab
equipment interprets an object of discovery (the lab assistant’s actions) as the
solution to a problem (the equipment going missing) in a scientific domain.
So let us focus on acts of theoretical scientific discovery, which are those that
solve theoretical scientific problems. Theoretical problems concern the phenomena
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studied in a scientific domain, while practical problems obfuscate our solving such
problems. The distinction is contextual, but it will do for our purposes.

Third, a scientific discovery must not merely appear to solve a theoretical
problem, it must actually solve it. (Or partially solve it for a partial discovery).
Thus Poincaré wrote that a mathematical discovery has three steps, an unconscious
combination of ideas, a flash of insight that suggests that one of these combinations
solves the problem, and then the most important step: verification that the solution
is correct.3 Since we do not want to discuss the mere feeling of discovery (what
William Whewell called “happy thoughts”), we must include some criterion of
success (Achinstein, 2001; Hudson, 2001). The kinds of solution that count as
successful for a given problem will vary according to context.

Fourth, in addition to producing a novel and successful solution to a theoretical
scientific problem, we require that the problem solved be significant. This is to
preserve the intuition that discoveries are in some sense special: not all novel
solutions to theoretical problems are discoveries. A problem is significant when
its solution possesses some minimum value in whatever the relevant set of weighted
scientific values are. Examples of such values include descriptive and predictive
adequacy, coherence with previous knowledge, fruitfulness, beauty and simplicity.

To summarise, scientific discovery events consist of an agent’s novel interpre-
tation of an object which successfully solves a significant theoretical scientific
problem. A discovery is more or less momentous depending on how novel and
complete the solution is, and how significant the problem solved is.

Can machines discover in this sense? Trigger events and objects of discovery can
be almost anything, and tests for a solution’s satisfactoriness can be programmed
into computers in advance, so I will leave these to one side and focus on the
question of whether machines can produce novel interpretations that provide
solutions to significant theoretical problems. According to some characterisations
of novelty, interpretation and significance, the answer will be, yes. As regards
novelty, machines can do things that are novel (in the sense that they have not
been done before) given the use of random number generators. Second, machines
can interpret if by interpretation we mean categorisation. In this minimal sense of
interpretation, computers already categorise certain states as solutions by checking
them against programmed desiderata. Finally, machines can have significance
encoded into them, insofar as they are designed by scientists to address problems
that are antecedently deemed significant. In sum, there are senses of novelty,
interpretation and significance that justify the use of the concept DISCOVERY as
applied to machine behaviour.

But there are senses of novelty, interpretation and significance that will be more
difficult for machines to satisfy. These can be found in many corners of science.
We want to know what is required if machines are to satisfy even the most difficult.

3He writes, “Discovery consists precisely in not constructing useless combinations, but in
constructing those that are useful, which are an infinitely small minority. Discovery is discernment,
selection” (Poincaré, 1914, p. 51).
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Good candidates can be found by considering qualitative discoveries like those made
in the social sciences.

4.3 Social Scientific Discovery

A broad range of methods are used by social scientists, from surveys and statistics
to interviews and observations. Naively, we can draw a continuum from positivist
to interpretivist social science methods. Positivists focus on observables such
as physical movements and questionnaire responses, and explicitly endorse the
more “objective” methods of science, including standardised surveys and statistical
analyses. They aim to draw generalisable lessons concerning human behaviour.
Interpretivists argue that positivist methods cannot capture the rich complexity
of human social life. To understand this complexity, researchers must be deeply
immersed in the target system and recognise that they can only uncover a limited
amount from a limited perspective. In light of this, interpretivists claim that their
discoveries will not be widely generalisable.

Insofar as positivist social science employs quantitative methods of science,
machines can make positivist social scientific discoveries if they can make quantita-
tive discoveries in other fields of science, and I assume they can. A harder question is
whether machines can discover in interpretivist social science. That is, can machines
produce new interpretations of the shared experiences and meanings of agents as
solutions to significant theoretical problems concerning how communities form,
function and fall apart? The answer depends on the relevant senses of novelty,
interpretation and significance, which can be extracted from what sociologists do
and teach.

It would be impossible to review the notion of discovery across all interpretivist
social sciences, so in what follows I focus on ethnography, which I take to be a
paradigm interpretivist social science method shared across many subdisciplines of
social science including sociology, anthropology, international relations, economics
and history.

The ethnographic method discovers by means of field studies, which include
participant observations and interviews. The main goal of this kind of research
method is to tell us why people think and behave in the ways they do in terms
of the meanings they ascribe to the objects and events that surround them. For
example, Rosabeth Kanter’s famous study, Men and Women of the Corporation
(1977) found that secretaries in the 1970s had little or no upward mobility because
of “trained incapacity,” that is, “training that makes people fit for one position [but]
progressively less fit for any other” (Kanter, 1977, p. 98). The skills developed
by the secretaries studied by Kanter were highly specific to the needs of their
particular bosses. While such specialisation might have provided job security, it also
ensured that bosses typically would not let their secretaries move into other (higher)
positions.
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Another example is Annette Lareau’s Unequal Childhoods (2003), which
focused on how differences in social class affected parenting styles among American
families. Middle class parents seemed to favour a style Lareau called “concerted
cultivation,” according to which children are allowed negotiation power concerning
their life trajectories, are put into organised activities, and are taught to question
authority. Lareau dubbed the other style “accomplishment of natural growth,”
which she found to be favoured by working class families. This style gives far
less negotiation power to the child, but also imposes less organised structure on
daily life. As a result, children are encouraged to respect authority figures while
developing a sense of personal independence; both thought to be beneficial character
traits in the context of working class life.

The above examples are typical of interpretivist social scientific discoveries: an
agent or team performs observations and interviews motivated by a few general
questions, and interprets the data to find patterns that explain why certain social
phenomena take the forms they do. Now, in what sense are such discoveries novel
interpretations that solve significant problems?

4.3.1 Ethnographic Novelty

According to two widely used ethnography textbooks, “A report may be perceived
as new and noteworthy . . . in at least three ways: through theoretical discovery,
extension, or refinement” (Lofland, Snow, Anderson, & Lofland, 2006, p. 173; see
also Snow, Morrill, & Anderson, 2003, p. 186). The second, theoretical extension,
“involves extending pre-existing theoretical or conceptual formulations to groups or
settings other than those in which they were first developed or intended to be used”
(Lofland et al., 2006, p. 173). There are difficult cases where it is not clear how to
extend a conceptual formulation or how to determine what counts as a new domain
of application, but in general this is something machines have been doing more and
more effectively, especially in mathematics (Lenat, 1977), physics (Langley, 1981),
chemistry (Żytkow & Simon, 1986) and biology (Kulkarni & Simon, 1990). We can
expect this progress to continue, and it is only a matter of time before machines can
apply existing models of human behaviour to new sociological data.

Theoretical refinement is “the modification of existing theoretical perspectives
through the close inspection of a particular theoretical proposition or concept with
new field data” (Lofland et al., 2006, p. 173). Again, there is no reason to deny this
sense of novelty to machines. If something like the dominant view in philosophy of
science is correct—that theories are collections of models—then we already have
programs that can analyse data to create or refine models, which in this sense of
theory, satisfy the requirement (for examples of programs that are capable of such
novelty, see Valdés-Pérez, 1995, and Kocabas & Langley, 1998).

These are not the most interesting sorts of novelty. Indeed, it has been argued
that if computers are limited to these sorts of novelty, they cannot really discover
(Gillies, 1996). So let us turn to theoretical discovery.
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Theoretical discovery requires categories to be devised and used in a way
that interprets and explains data. This could be novel because the data is novel,
the interpretation is novel, or both. For instance, we could use an old system
of interpretation (e.g. looking at power imbalances) to analyse a new social
phenomenon (e.g. Twitter behaviour). Or we could look at old data through a new
interpretive scheme. Or we could produce a new interpretation of new data.

The first of these options can be achieved by computation as theoretical
extension. What is interesting about the second and third is the production of a
new interpretation. To give an account of the novelty relevant for social scientific
discovery, therefore, we need to look at the nature of ethnographic interpretation.
But first, a quick look at ethnographic significance.

4.3.2 Ethnographic Significance

According to Lofland et al. (2006, pp. 177–181), a significant ethnographic solution
should do at least some of the following: (a) go against “common sense” or the
“modern mind-set,” (b) develop ideas that “establish broader implications,” (c) be
well-developed, that is, use or generate concepts that are elaborated in detail, with
a good balance of conceptual elaboration and data presentation, and a high degree
of interpenetration between the two, or (d) refine or extend existing social science
ideas. Let us address these in turn with machine discovery in mind.

First, because computers are not typically programmed to reason as humans
do, they generally go against common sense and the modern mind-set. We might
nevertheless worry that they have their own computer common sense: patterns of
reasoning and expression that they cannot deviate from. Machine novelty could
then be thought of as the power to break free from such reasoning styles. This is
something machines can currently do, as programmers regularly soften the criteria
that define problem solutions and appropriate methods, as well as adding stochastic
elements and evolutionary algorithms that encourage flexibility in problem solving.

The second way of achieving significance, namely, establishing broader implica-
tions, is an instance of theory extension, which we granted was within the purview
of machines.

The third, which Lofland et al. (2006) call “developed treatment,” merely
requires that work be done “well”: a significant study will be well-researched, have
conclusions that are empirically or theoretically well-supported and were arrived at
using scientific interventions that were carefully thought-out and cleverly brought-
about. However, there is no (unique, finite, exhaustive) list of methods that are the
“good” or “scientific” ones. The only list we have is open-ended. So, how could
a computer go about choosing the best evidence and the best methods, when we
cannot say in advance what those are? The computer will have to answer these
questions by interpretation. Given the theoretical context, methods available and
data collected, it must interpret one or some of the methods as the most appropriate.
And it must interpret one of the many possible explanations as the best or most
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plausible. In other words, for a machine to satisfy this requirement it must interpret
well.

The fourth sense of significance, namely, to refine an existing theory, is equiva-
lent to theoretical refinement, which we granted above is achievable for machines.

In sum, to recognise and achieve significant solutions to theoretical social
scientific problems, the only crucial element that machines do not yet obviously
possess is the capacity to interpret. Just as an ethnographer is able to interpret the
significance of the actions, questions, explanations and so on, that she observes, the
social scientific community is able to interpret the significance of the ethnographer’s
results.

The cognitive requirements for producing a novel, significant interpretation
must therefore be a superset of the cognitive requirements for interpretation alone.
Novelty and significance are features of interpretations and problems respectively,
and they are attributed by interpretation. If we want to uncover the cognitive
requirements of producing a novel, significant interpretation, therefore, we will be
off to a good start if we can identify the requirements for interpretation in general.

4.3.3 Ethnographic Interpretation

We can identify three main interpretive methodologies: analytic induction, grounded
theory and the extended case method.4

To pursue analytic induction, we produce claims of universal generality that
we aim to refute using particular cases, over and over, until only one irrefutable
universal explanation remains. To reach this final end point (if it was also a novel
solution to a significant theoretical problem) would be to discover. However, since
we could never establish that any universal statement was forever immune to
future disconfirmation (Katz, 2001), more recent versions of analytic induction have
relaxed this requirement, and focus more generally on the method of hypothesis
and counterexample. The role of interpretation in analytic induction is to turn
data into counterexamples and to determine how to refine theory to avoid those
counterexamples.

Grounded theory, in its strongest (and original) form, claims that theory must
come from data and never the other way around. An often-quoted phrase is: “An
effective strategy is, at first, literally to ignore the literature of theory and fact on
the area under study, in order to assure that the emergence of categories will not be
contaminated by concepts more suited to different areas” (Glaser & Strauss, 1967,

4For a statement of analytic induction, see Znaniecki (1934) and Lindesmith (1947). For statements
of grounded theory, see Glaser and Strauss (1967), Corbin and Strauss (1990), Glaser (1978),
Strauss (1987), and Strauss and Corbin (1990). For statements of the extended case method,
see Burawoy (1991, 1998, 2000). In what follows, I try to distil the methods of ethnographic
interpretation, but I cannot do them complete justice. Interested readers are encouraged to look at
the sources listed for more details.
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p. 37). As with analytic induction, criticism has softened grounded theory over time.
For example, Strauss (one of the theory’s originators) came to admit that it is not
realistic to think we could generate theory purely from data and data alone (Strauss
& Corbin, 1994, p. 277). The main idea is now something like the following. As
much as possible, we must try to let themes and patterns present themselves to
us instead of imposing existing categorisations and theoretical assumptions on our
data. Then, we test the emerging notions against future observations and interviews,
until we feel sure we have understood them correctly. The relevant notion of
interpretation here is complicated, and we will return to it in a moment.

In the extended case method, the emphasis is on extending and developing theory
through qualitative methods. Given some background theory, a researcher enters the
field with a host of specific hypotheses inspired by theory. Fieldwork is then “a
sequence of experiments that continue until one’s theory is in sync with the world
one studies” (Burawoy, 1998, pp. 17–18). Things not relevant to the background
theory and initial set of questions can and should be ignored.

On a loose reading, these methodologies are not mutually exclusive. One
can begin with a theory in mind to inform an investigation (as in the extended
case method), but look for empirical counterexamples (as in analytic induction)
and be ready to create new conceptual resources as necessary (as in grounded
theory). However, the extended case method and analytic induction produce new
interpretations in the senses of theory extension and refinement respectively. What
we really want are cases where new theoretical understanding is born from the data.
This is the promise of grounded theory.

A great deal has been written on the process of interpretation in grounded theory.
In general terms,

You get from data, topics, and questions, on the one side, to answers or propositions, on
the other, through intensive immersion in the data, allowing your data to interact with your
disciplinary and substantive intuition and sensibilities as these latter are informed by your
knowledge of topics and questions (Lofland et al., 2006, pp. 198–199).

This kind of interpretation “occurs continuously throughout the life of any
qualitatively oriented project” (Miles & Huberman, 1994, p. 10). It begins with
coding the data, which is “the process of defining what the data are all about”
(Charmaz, 2001, p. 340) or “relating (those) data to our ideas about them” (Coffey
& Atkinson, 1996, pp. 45–47) by “sorting your data into various categories that
organise it and render it meaningful from the vantage point of one or more
frameworks or sets of ideas” (Lofland et al., 2006, p. 200). The codes themselves are
“names or symbols used to stand for a group of similar terms, ideas, or phenomena”
(LeCompte & Schensul, 1999, p. 55), “tags of labels for assigning units of meaning
to information complied” (Miles & Huberman, 1994, p. 56) or just “the labels we
use to classify items of information as pertinent to a topic, question, answer, or
whatever” (Lofland et al., 2006, p. 200).

Once some codes are established, we move to “focused” coding. One way to do
this is to sort the codes into units and aspects, which combine into topics. The unit is
the scope of the sample (Lofland et al., 2006, pp. 122–132), for example, a practice
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(like getting ready for work), an episode (like divorce), an encounter (like a cocktail
party), an organisation (like a school), or a larger community (like a refugee camp).
An aspect of a unit might be the beliefs, norms, ideologies, emotions, relations, etc.,
of the people in the unit. These combine to form a topic (e.g. the faith of people in a
sports team or the norms governing drug dealers). Topics should emerge and change
naturally as the ethnography progresses.

These reflections ready us for writing “memos,” which are “the intermediate step
between coding and the first draft of your completed analysis” (Charmaz, 2001,
p. 347). This is where we generate and develop possible explanatory relationships
between data (organised in codes) and the topic. Again, coding and memoing must
be done simultaneously with the data collection process, so that ideas can be brought
back to the field, tested and updated.

But how do we select units and aspects and generate meaningful codes and
memos? “Field researchers too rarely elaborate how they get from their data, topics
and questions to their findings and conclusions. The result is a kind of ‘black box’ or
. . . ‘analytic interruptus’ . . . between the data-gathering and writing phases of the
fieldwork enterprise that contributes to the sense that qualitative analysis is often the
result of a mystical process or romantic inspiration” (Lofland et al., 2006, p. 211).
While we can identify the parts or milestones of this process (coding, memoing,
etc.), there still appears to be some extra cognitive leap that is left undescribed. And
this is why, admitting that some parts of this process can be performed by machines,
Lofland et al. claim that data interpretation “is not a process that can be farmed out
to independent analysts nor . . . to computers and various software programs” (2006,
p. 196).

Why not? I think it has to do with interpreting well, as opposed to merely
interpreting. Perhaps a machine can select units, aspects and topics, generate codes
from data and organise the codes into answers about a topic. But the thought might
be that a machine cannot do this well. Interpretation can be a simple act of rule-
governed categorisation, but it can also be one of the most difficult cognitive acts
that an agent can perform, requiring creativity, patience, imagination and insight.
Perhaps it is some of these underlying cognitive powers that ethnographers suspect
are missing from machines. In the next section, I will try to identify some of the
cognitive powers that make the most difficult acts of interpretation possible.

4.4 Machine Interpretation

Building on the work of Peter Winch (1958) and Charles Taylor (1971) I will argue
that there are at least five abilities any agent must possess in order to interpret well.
I leave out abilities like collecting data and performing calculations, which I take
machines already to possess.

To begin with, explaining human social behaviour requires that we discern
the meanings of utterances and actions. And this requires that we recognise the
possibility of certain behaviours having meanings at all. A statement is not just the
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production of a sound wave, it is also the expression of a thought. Following from
this, a machine must have at least the following two abilities:

1. It must be able to distinguish between the presentation of a datum and the
meaning of that datum when such a difference obtains.

When someone says, “I’m fine”, they present themselves as being fine. They
might also mean that they are fine. But they might not. If we always assumed that
speakers meant exactly what they said, no additional sense could ever be made. So,
for a machine to discover in ethnography it must make this distinction and be able
to recognise cases where presentation differs from meaning.

2. Once this distinction is made and instances are identified in which meaning
(seems to) differ from presentation, an interpreter needs a method for determining
meaning.

We do not need to overcome the indeterminacy of translation or interpretation
here: partial interpretation or partial grasp is perfectly fine in ethnography as an
intermediate step towards understanding. But some way of getting from presentation
to meaning is necessary, perhaps by means of a principle of charity and some
informed guesses (Stuart, 2015). This is especially difficult where metaphors, loose
speaking, body language or implicature are involved.

Next, meaning is only ever meaning for. There are no absolute meanings, or
meanings in vacuo. An action might have one meaning for the actor, and a different
meaning for the researcher, who looks at it in a different way. Because of this,

3. An interpreter must be able to identify the subject for whom something has a
given meaning.

Without being able to say who means what, a machine interpreter cannot
interpret, not least because the properties of the specific agent are needed to inform
the interpretation.

To understand human behaviour, we must understand not only the meanings
attributed by actors to events and objects, but also the purposes for which actions
are performed and the normative constraints that govern those actions (Winch, 1958,
p. 77). This is necessary if we are to give a full explanation of any behaviour: the
purpose of intentional action is to achieve some end, which is desired for some
reason. Therefore, in order to perform ethnographic interpretation,

4. An interpreter must be able to tell the difference between actions performed
intentionally and unintentionally, and identify what the reasons for action are.

Sometimes we can discover someone’s intentions simply by asking. But to
interpret the answers we receive again requires knowledge of intention, because
we must know whether our subject intends to be deceptive before we can consider
taking their answers at face-value. In other words, to uncover someone’s intentions
by asking, we must already be able to interpret intentions. A second difficulty
is that we cannot determine what a subject intends based on observation alone.
Contributions of irrationality and luck must be recognised, otherwise, we interpret
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a gambling addict as intending to lose money, and people acting under cognitive
biases in general as intending to ignore pertinent evidence or deceive themselves.

Finally,

5. An interpreter must observe and track the differences between their worldview
and the worldviews encountered in the field.

To understand someone, we must allow that they might not mean what we mean,
see things as we do, desire what we desire, attribute the same level of importance to
the same things, and so on. Because of this it is crucial for ethnographers to know
what their own worldview is, so that they can tell when and how it informs their
interpretation of the worldviews under study. “Do they mean A by B, or do I only
think so because A is what I would mean by B?”

In sum, we have five abilities required for an agent to interpret in the most
difficult cases of ethnographic discovery: the ability to (a) distinguish presentation
from meaning, (b) identify meaning, (c) identify the “owner” of a meaning, (d)
identify reasons for behaviour (while leaving room for irrationality and luck) and (e)
distinguish, track and translate worldviews. There are surely other relevant abilities,
but at least these five are necessary.

Can machines possess these abilities? Instead of pretending to know what future
machines will be capable of, I want to say what they would have to be like if they
were to possess them. Specifically, I want to argue that each ability requires at least
the faculty of imagination. Imagination has no commonly accepted definition, but
the basic idea is the ability to interact cognitively with objects and states of affairs
not currently present to sensory experience (see Stuart forthcoming). Let us go in
order.

1. To distinguish between presentation and meaning, an agent must recognise that
there are always several possible meanings we could attribute to any given
presentation (and vice versa). Such recognition requires looking beyond the
presentation, in other words, we must conjure and consider states of affairs not
currently present to experience. To distinguish between the statement “I’m fine”
and the actual meaning someone intends with that statement, we must be able to
imagine that the person could mean different things by that statement.

2. To identify meaning, the machine must be able to present to itself options for
semantic ascription other than what is immediately inferable from the data alone,
and choose the best option. Sometimes this is a straightforward practice that
could be made algorithmic. But at some point we hit bedrock, and to break
through we require a special sort of experience and acquaintance. Consider an
emotion term like “shame”. This

can only be explained by reference to other concepts which in turn cannot be understood
without reference to shame. To understand these concepts we have to be in on a certain
experience, we have to understand a certain language, not just of words, but also a certain
language of mutual action and communication, by which we blame, exhort, admire, esteem
each other. In the end we are in on this because we grow up in the ambit of certain common
meanings. But we can often experience what it is like to be on the outside when we
encounter the feeling, action, and experiential meaning language of another civilization.
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Here there is no translation, no way of explaining in other, more accessible concepts. We
can only catch on by getting somehow into their way of life, if only in imagination. (Taylor,
1971, p. 13)

In other words, many basic pieces of the human semantic puzzle can only be grasped
by taking part in common actions, values and experiences. Such participation is
ultimately the source of many of our own meanings (Winch, 1958, pp. 81ff),
though as Taylor mentions, this participation can also take place in imagination. For
example, I possess many important concepts that I could not have gained through
actual participation in the home-world of those concepts, because those worlds are
fictional or in the past. It is therefore only through exercises of imagination that
some instances of semantic understanding can be had, and this will be especially
true for machines that cannot (yet) experience many of the things humans do. In
any case, even when we have all the relevant experience, we still need to be able
to come up with reasonable guesses about what someone means, and find ways
to test those hypotheses (Stuart, 2015). And this requires imagination because to
test hypotheses we must imagine different experimental setups (in non-trivial cases)
and decide which would be more effective for testing by reasoning through possible
outcomes of these tests. In other words, we must reason through states of affairs that
do not (yet) exist.

3. To identify the owner of a meaning, the machine must be capable of taking up
the perspective of an agent to see if a given meaning attribution is reasonable.
Taking up a different perspective requires a cognitive departure from our present
experience of objects and events, and this requires imagination.

4. The only way to identify someone’s intentions (without being told what they
are) is to imagine that you have the personal and contextual properties of the
agent, and then ask yourself what reasons you would have for acting if you were
them. In other words, the ability to interpret others depends both on the ability to
interpret yourself (Jackman, 2003) – which requires seeing that your own mental
actions have more than one possible meaning – and the ability to convert yourself
mentally into an approximation of someone else. Both of these abilities were
discussed above, and both require imagination.

Finally,

5. Tracking the differences between one worldview and another and establishing
semantic links that would enable translation between them requires experience
of both worldviews. However, we can only occupy one substantial worldview at
a time (otherwise we would have to attribute conflicting properties to the same
object). So, to determine and compare worldviews, we must be able to distance
ourselves from our current worldview, get into another, and then switch back and
forth to make comparisons. And this requires presenting the same objects and
events to ourselves from different perspectives, which is to cognise objects and
states of affairs otherwise than they are given to us.
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Imagination is what enables us to recognise that there are several options for what
someone might mean, hypothesise a number of plausible candidates, choose ways to
test those candidates, and participate in the otherwise inaccessible action-worlds of
others and thereby gain new concepts. It helps us put ourselves in another’s position
or worldview by seeing ourselves acting under different constraints with some of
our existing properties strengthened, and others diminished or removed. Each of the
five abilities needed to interpret in difficult cases requires cognitive interaction with
objects and states of affairs not currently present to sensory experience. Imagination
is therefore a fundamental capacity underlying ethnographic interpretation.

4.5 Conclusion

I have discussed the possibility of ethnographic machine discovery and I have
argued that interpreting human behaviour and natural language systems of meaning
requires imagination. A fortiori, imagination is necessary for producing some of the
novel interpretations that solve significant problems in social science. Therefore,
some discoveries in social science are only possible if the discoverer possesses
imagination. This implies that for machines to be able to discover in social science
to the same extent that humans can, they will require imagination algorithms.

Could such algorithms exist? That is, could a machine cognitively interact with
objects and states of affairs that are not currently available to their sensory “expe-
rience”? Under some interpretations, yes. Computers can propose counterfactual
hypotheses to make certain inferences. Logic software does this for reductio ad
absurdum proofs and conditional derivations. But this is not the same as entertaining
something that is not present, e.g., something fictional, since in the case of the
logic program, the machine is interacting only with symbols that are present to
its “experience”. Perhaps we could reserve (sense) “experience” for machines that
have more human forms of data input, like sight and hearing, but this seems unduly
restrictive since most machine discovery systems do not currently have such input.

Concerning more substantial senses of imagination, like those required for
perspective shifting and empathy, things are even murkier. I conclude therefore on
what I think is a surprising note. The necessary conditions for scientific discovery
(conceived of as an action) include providing novel interpretations that solve
significant theoretical scientific problems, and in order to say whether machines
can produce such interpretations we first need a better understanding of the
imagination and what cognitive powers are required for its operation. Unfortunately,
philosophers and cognitive scientists are still very far from possessing such an
understanding.

To conclude, those who feel skeptical or optimistic about the extent to which
machines can discover in science might profitably focus that skepticism (or
optimism) on the nature and possibility of imagination algorithms. And to do
this, we require a better understanding of the nature and cognitive requirements
of imagination in humans, and imagination in general.
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