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6  Moving Targets and Models 
of Nothing
A New Sense of Abstraction for 
Philosophy of Science

Michael T. Stuart and Anatolii Kozlov

6.1 Introduction

Abstraction is a process that is required for building scientific models. 
Typically, it is thought to involve subtracting irrelevant details. In this 
sense, it is sometimes portrayed as a necessary but acceptable epistemic 
evil, since it doesn’t introduce anything false, and it is reversible.

However, “that there are different kinds of abstractive processes is not 
often addressed in philosophy of science or cognitive science” (Nersessian 
2008, 191). We want to focus on another, very different sense of abstrac-
tion, one that is found in discussions of abstract art in aesthetics. This sense 
is non- representational in some ways, but not in others (Goodman 2003). 
We think this concept of abstraction better describes certain processes of 
model- building in science.

In this chapter, we follow the approach of Nancy Nersessian (2008, 
section 6.2.2.) and Sabina Leonelli (2008) in foregrounding the cognitive- 
epistemic process of abstraction. We begin by looking at the history of 
work on abstraction in the philosophy of science, to get clear on the 
“standard” notion of abstraction, which we label “subtractive” abstrac-
tion. Then we canvas the history and philosophy of abstract art to present 
a different notion of abstraction, which we label “generative” abstraction. 
Then, we employ case studies to show that some scientific processes of 
abstraction are correctly labelled as generative, not subtractive. Finally, we 
consider some philosophical implications.

6.2 “Subtractive” Abstraction in Philosophy of Science

In philosophy of science, abstraction is usually discussed with reference 
to scientific representation, especially scientific models. Demetris Portides 
sums things up: “models are primary devices of scientific representation” 
and “idealizations and abstractions are manifest in most (if not all) kinds 
of scientific representation”. Thus, “it has become commonplace that 
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scientific models, scientific representation and idealization/ abstraction 
are entangled concepts” (Portides 2021). While the terms “abstraction” 
and “idealization” are sometimes applied to objects other than models, 
for example, explanations, objects, or “paths” to representations, these 
discussions are usually closely related to models (Carrillo and Martínez 
2023; Jansson and Saatsi 2019; Verreault- Julien 2022).

Why are these notions so closely entangled? Representation is important 
(at least) because of its central role in epistemological questions about 
surrogative reasoning in science. Ideally, it is thought, a representation 
would capture all the aspects of a target system, and so whatever we learn 
about the representation will also be true of the target system that was 
represented. In practice, however, scientists cannot represent all the aspects 
of any target system. So, they employ abstraction and idealization. This 
complicates the idea that models give us straightforward epistemic access 
to the world. The main epistemological question, then, asks how a model 
can provide new epistemic desiderata (knowledge, truth, approximate 
truth, epistemic access, understanding, pursuit- worthy hypotheses, etc.) 
about a target system despite (or in virtue of) being abstract or idealized.

Ernan McMullin differentiated between several concepts that would 
later form the basis of the distinction between abstraction and idealization 
(McMullin 1985). These two concepts were more recently redefined by 
Martin Thomson- Jones such that “idealization” should refer to misrepre-
sentation and “abstraction” should refer to mere omission (Thomson- Jones 
2005). Idealization “requires the assertion of a falsehood”, and abstrac-
tion “involves the omission of a truth” without misrepresentation (175). 
Thomson- Jones doesn’t claim to capture all the useful ways of talking 
about model- building, but proposes this distinction as a useful framework 
for analysing the epistemology of scientific representations. Peter Godfrey- 
Smith presents a view that differs “only in points of emphasis” (Godfrey- 
Smith 2009, 48). Specifically, an abstract description “leaves out a lot”, 
while an idealized description “fictionalizes” in the sense that it does not 
present a literally true description of the target, and at the same time, it 
describes an imaginary system that would be concrete if real. This way of 
thinking about abstraction and idealization still dominates the literature 
in philosophy of science. Here is a recent statement: “An abstraction is the 
wholesale omission of a property…An idealisation is the distortion of a 
property…For this reason, abstractions offer a literally true (albeit incom-
plete) representation of the target, while idealisations assert, if understood 
literally, falsehoods” (Frigg 2023, 317).

The literature on abstraction and idealization has since exploded, and 
many detailed epistemological accounts of both now exist. On abstrac-
tion, Michael Strevens argues that one model is more abstract than 
another if the causal influences described in the latter are also described 
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by the former, and every proposition in the latter model is entailed by 
the former (2008, 97). Leonelli distinguishes between abstract models 
understood as (a) non- concrete models, (b) models requiring more 
information to make empirical statements about the real world, and 
(c) models applying to more phenomena (2008, 520). Arnon Levy 
argues that one representation is more abstract than another if it is rela-
tively less informative about the same target (2021). Thus, “mammal” 
is more abstract than “Red- tailed Chipmunk”. Idealization has tended 
to take up more of the spotlight because idealizations are (or include) 
misrepresentations, which present a greater challenge to those trying to 
account for epistemic uses of scientific representations. Many strategies 
now exist to deal with this challenge. For example, we can claim that 
only the true parts of idealized models refer, or that idealizations are 
merely practical shortcuts, or that idealizations do some epistemic heavy 
lifting without figuring into the content of the scientific understanding 
they produce, or that idealizations are not misrepresentations (see, e.g., 
Strevens 2008, 2017; Khalifa 2017; Lawler 2019; Yablo 2020; Levy 
2021; Nguyen 2020).

There is an important assumption shared by almost everyone who 
participates in the above debates, and it can be traced back to McMullin. 
Idealization and abstraction (and their subtypes) have one general aim: “a 
deliberate simplifying of something complicated (a situation, a concept, 
etc.) with a view to achieving at least a partial understanding of that 
thing” (1985, 248; emphasis added). It is important to point out that this 
aim focuses on simplifying a single, unchanging target system. The goal “is 
not simply to escape from the intractable irregularity of the real world” 
but “to grasp the real world from which the idealization takes its origin” 
(1985, 248). In other words, the target system for abstraction and ideal-
ization is deliberately set from the start, and learning about that target is 
the aim. This is a natural assumption to make given the prevalence and 
importance of surrogative reasoning in science. And indeed, a great deal of 
scientific modelling does take place in this way.

This idea, that abstraction is a process directed at a single (concrete) 
target that doesn’t change, also plays a role for philosophers who focus on 
abstraction as a process rather than as a product. For example, Leonelli 
characterizes abstraction as “the activity of selecting some features of a 
phenomenon P, as performed by an individual scientist within a specific 
context, in order to produce a model of (an aspect of) P” (2008, 521). 
For Leonelli, abstraction is a process that transforms features of the target 
system into parameters used to model that very target system. In Leonelli’s 
case study, the target might be a concrete organism, such as Arabidopsis 
thaliana, or something less- concrete, such as a signalling pathway. But it 
remains constant from the beginning to the end of the process.
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Due to this assumption, scientific model- building is imagined as begin-
ning with the choice of a particular target system (e.g., the pendulum, the 
atom, an economy, a population of rabbits, a signalling pathway, etc.). 
Idealizations and abstractions are introduced which shape the model, that 
is then manipulated, and conclusions are finally drawn about that target 
system. This raises the epistemological question of how those conclusions 
are justified. In the case of abstract models, the answer might go some-
thing like this: the scientist had originally removed some details without 
misrepresenting the system, so the model will deliver (at least approxi-
mately) correct information about the aspects of that target that were not 
removed. Better still, the scientist can add back in the details that they had 
earlier removed, to produce conclusions that are even more justified.

In this chapter, we focus on a different way of thinking about abstrac-
tion, one that does not hold the target fixed. That is, rather than considering 
abstraction as a process that is always epistemically tied to a single target 
system which is given from the start, we consider processes of abstraction 
that create new systems, new targets, and leave the old targets behind. 
This is inspired by a notion of abstraction that we find in discussions of 
abstract art.

6.3 “Generative” Abstraction in Abstract Art

Abstract art is said to originate somewhere between 1910 and 1920. 
Often regarded as “the most important development of early 20th- century 
[Western] art”, it is connected with artists like Hilma af Klint, Wassily 
Kandinsky, Kazimir Malevich, Piet Mondrian, Paul Klee, Mark Rothko, 
and Jackson Pollock, who were reacting to movements like impressionism 
and cubism, especially the work of Paul Cézanne, Henri Matisse, and 
Pablo Picasso (Chilvers and Glaves- Smith 2009). The impressionists, 
cubists, and abstract artists were united in demanding a new aesthetic 
that would break away from the kind of mimesis characteristic of artistic 
realism. However, while cubists and impressionists departed from realism 
in important ways, it was characteristic of their work that they never gave 
up on representationalism.

When Braque and Picasso found their work approaching the non- 
 representational or non- figurative or non- objective (all these terms are 
used), both artists ‘recoiled.’ They chose, like Cézanne and Matisse and 
the great majority of post- impressionist and modernist painters, not to 
lose sight of the object. For this reason among others it is often said that 
the aim of Cubism was essentially to represent reality more accurately 
and completely.

(Vargish and Mook 1999, 129)

 

 

 

 



122 Michael T. Stuart and Anatolii Kozlov

A cubist might present a person, a landscape, or a piece of fruit in a very 
different way, but they were still presenting a person, a landscape, or a 
piece of fruit.

What made abstract art different from other kinds of modern art? 
Calling it “non- representational” is misleading: all its key figures 
insisted that their work did, in fact, represent something. The diffe-
rence is that what they chose to represent wasn’t a typical visual object, 
like a person, landscape, or piece of fruit. Abstract artists might start 
with an object like that, but through a series of changes, they would 
remove all traces of the object, in order to present a series of lines, 
shapes, and colours.1 So far, this looks like subtractive abstraction. But 
the key is that the result would come to represent something else, some-
thing non- visual (Sánchez- Dorado, this volume). This is the sense in 
which abstract art is non- representational: “modernist abstraction is 
best understood not in terms of a loss of realistic detail but in terms 
of shifting the frame of reference away from the object” (Vargish and 
Mook 1999, 131).

Let’s illustrate with some examples. To repeat, omitting details in a 
painting was something the cubists and other modern artists were already 
doing. For example, each of Matisse’s four nude female backs comprising 
his The Back series (1908– 1931) progressively “lose realist detail without 
losing representational force” (Vargish and Mook 1999, 132).2 Around 
the same time that Matisse was working on The Back I (1908– 1909), 
Kandinsky was beginning to use the same subtractive abstraction for a 
different purpose. His early work employs strong blotches of colour and 
retains a clear link to representational impressionist art, for example, his 
Treppe Zum Schloss (1909).3 The work that comes even one year later, 
however, has already moved away from any concrete objects as its focus.4 
For another example, consider Mondrian’s increasingly abstract paintings 
of trees.5 The point we want to emphasize is that while subtractive abstrac-
tion is often involved, even centrally, in creating abstract art, that is not 
what makes abstract art abstract.

Of course, this wasn’t the first time non- representational art was 
produced (Gertsman 2021), and there were (and still are) disagreements 
among scholars and practitioners about what abstract art is. Alfred Barr 
identified two broad approaches, corresponding to the work and motiv-
ations of Kandinsky on the one hand, which was intuitional and emo-
tional, and Malevich on the other, which was intellectual and geometrical 
(Barr 1936). Barr’s distinction has been as controversial as influential. 
More recently, Diarmuid Costello has identified seven kinds of abstraction 
(2018). But there is always a core idea: abstract art leaves behind figura-
tive visual representations in order to draw attention to a new object that 
represents a non- figurative target.

 

 

 

 

 

 

 

 

 



Moving Targets and Models of Nothing 123

By moving away from initial concrete objects, artists were able to break 
free of the constraints of mimetic representationalism, the “prison” of 
limited form (Mondrian 2007). If an abstract artist wanted to investi-
gate something like ambition, for example, they would not need to paint 
Napoleon on a horse, or anyone, on any horse. Thanks to the cubists, space 
on a canvas was no longer modelled on a single viewpoint or constrained 
by the rules of perspective. Further, if you want to express something 
“divine” or “universal”, as Kandinsky, Malevich, and Mondrian all did, 
then you will likely need to adopt some kind of common language that will 
enable you to get the point across to audiences despite the difficult subject 
matter. In response, artists employed colour, line, shape, contrast, and so 
on, to present visual melodies and compositions that (they hoped) would 
convey the right message to different audiences. As Kandinsky wrote,

Colour is a means of exercising direct influence upon the soul. Colour is 
the keyboard. The eye is the hammer, while the soul is a piano of many 
strings. The artist is the hand through which the medium of different 
keys causes the human soul to vibrate.

(Kandinsky 1977, 43)

Only by moving to more “universal” forms of expression like harmony, 
line, and colour, which these artists (controversially!) took to be less cultur-
ally specific than other means of expression, did these artists believe they 
could convey more universal messages, or messages about more universal 
things, like inner harmony, psychic effect (Kandinsky), feeling (Malevich), 
and pure aesthetic relationships (Mondrian).

One might be tempted to conclude that abstract art is abstract just in 
the sense that it focuses on abstract targets instead of concrete ones. While 
this might be, we will remain focused on the process of abstraction itself 
without assuming that the artwork, artefact, model, or target system that 
is the output of such a process is abstract in some metaphysically heavy 
sense. Whether feelings are more or less abstract than fairies, functions, or 
fruit flies, we do not say. Targets of abstract art might always be abstract 
in the sense that they are significantly (if not entirely) non- figurative. But 
this does not require such targets always be abstract in the sense of being 
non- concrete, non- specific, or existing in Plato’s heaven. (For examples of 
concrete abstractions, see Knuuttila, Johansson, and Carrillo, this volume.)

What we are calling “generative abstraction” is a process of creating 
a representation. It may begin by representing some particular concrete 
target. It may involve subtracting features from that target in creating the 
representation. But then it moves on to become a representation of some-
thing other than the target that initially inspired it. It is generative in the 
sense that in the process of creating it, a new target is generated, which is 
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different from the initial target. We will complicate this idea in a moment. 
But first, consider Costello’s helpful discussion of types of abstract photog-
raphy. One is called “weak” abstraction, in which a photograph contains 
no easily recognizable objects, though it is clear that one is looking at 
everyday things (like a detail of a wall). “Strong” abstraction works like 
weak abstraction, only it is no longer possible to tell what one is looking 
at, beyond lines, shapes, and colours. Next is “constructed” abstraction, 
which interferes with the photographic process directly (e.g., in a dark-
room, using light, shadow, and chemicals) to produce images that are 
not “of” anything, but which still might resemble or call to mind certain 
material textures or natural phenomena we recognize. Finally, we have 
“concrete” abstraction, which produces something entirely new, “from 
scratch” (2018, 399), and which refers to nothing outside the processes of 
photography and the image itself. An artist might go through each of these 
“stages” of abstraction, either in their career or in the course of creating 
a single artwork. Obviously, an artist might directly begin by producing 
“concrete” abstractions that were inspired by no target system outside the 
artwork, without going through the other “stages”. Still, thinking of it as 
a process that moves away from a concrete target system will be helpful 
in what follows.

We have distinguished two abstractive processes, and now we want 
to suggest that each requires its own epistemological account. We called 
the process of intentionally leaving certain details out of a representation 
“subtractive” abstraction. This we find in both scientific model- building 
and abstract art (as well as non- abstract art). The epistemology of such 
a process has been accounted for by philosophers primarily using what 
we might call a “preservative” epistemology. A representation is created 
and used in an argument for a particular conclusion about a particular 
target system. For example, a particular pendulum is presented, a model 
is built of that pendulum, which subtractively abstracts certain features 
but retains important truths. We find something holds in that model (for 
example, that the pendulum’s period is proportional to the square root of 
the length of the string of the pendulum), and we extend this finding to the 
real pendulum. And this extension is thought to be justified because the 
model already contains accurate information about that very target. Thus, 
the model is epistemically preservative. The justificatory force behind the 
conclusion was just the empirical observations and justified theoretical 
background knowledge that we already had. What justifies extending our 
knowledge to all pendulums is a separate inductive argument, which says 
that what we’ve learned about this particular concrete pendulum should 
hold (roughly) for all pendulums, because pendulums are similar in a way 
that is relevant for induction (for discussion, see Norton 2021). While we 
want to draw attention to another notion of abstraction, we recognize that 
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there is much more to be said about the practice and epistemology of sub-
tractive abstraction (see, e.g., Suárez, this volume).

We called the second kind of abstractive process “generative abstrac-
tion”, and this process is more complex, at least insofar as it can con-
tain processes of subtractive abstraction. Abstraction in this sense is a 
process of creating representations that mostly or completely leave the 
initial target system behind, to produce artefacts that become a more 
central focus than the initial target system. These created artefacts may 
still represent something, and what they represent tends to be expressed 
in a more “universal” language that can be interpreted from a range 
of different perspectives. “As David Bohm has observed, the abstract 
images of Kandinsky’s maturity rely for their visual effect only on what 
is immediately presented: they are considered complete creations in and 
of themselves by virtue of their inherent structure and qualities” (Berry 
2005, 101).

There are at least two ways in which the process of generative abstrac-
tion might go: first, in a stepwise manner, moving further and further away 
from an initial, concrete, inspiring target. In this case, generative abstrac-
tion might begin as subtractive abstraction, but it goes beyond this when 
it severs its ties to the initial system and draws attention to itself and the 
new target. Second, a generatively abstract representation can be built dir-
ectly, without any initial, concrete, inspiring target system. What quali-
fies instances of the second type as instances of abstraction is that the 
finished product has the same set of epistemological features as the first, 
resulting from their lack of reference to any initial concrete target system. 
For example, consider Mondrian’s Composition B (No. II) with Red.6 
This painting aimed to represent “the dynamic equilibrium of true life” 
(Mondrian 1987, 283). We may fairly assume that it was not inspired by 
a concrete initial target and was created to represent the dynamic equilib-
rium of life directly. Both processes of generative abstraction are processes 
of abstraction because they take us to “a more abstract place”. And nei-
ther can be understood wholly as subtractive abstractions, because in the 
first case, we eventually cease subtracting and start building, while in the 
second case, we were never subtracting at all.

The epistemology of abstractive representations cannot be exhausted by 
a preservative account: it must be supplemented by a generative account 
(for a related distinction between preservative and generative accounts, 
see Miyazono and Tooming 2022). The question is not about justifying 
conclusions concerning a single target, but about producing new and 
epistemically valuable targets, about which our representation can teach 
us. The goal of the rest of this chapter is to discuss the epistemology of 
generative abstraction as it appears in science. To do this, we first identify 
some cases.
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6.4 Scientific Models Can Be Generatively Abstract

Nancy Nersessian’s book Interdisciplinarity in the Making: Models and 
Methods in Frontier Science (2022) presents the results of more than 
15 years of ethnographic research into how scientists make models. The 
case we want to focus on concerns a series of connected models built 
in a neuroengineering lab. Very roughly, we might describe their work 
as follows. The scientists wanted to understand how the brain “learns”, 
which they operationalized in terms of the construction and stabiliza-
tion of networks of neurons in response to external stimuli and feed-
back. To investigate this sense of “learning”, they turned to studies on 
the brains of rats. Rather than performing ex vivo studies on rats brains, 
they “harvested” cortical neurons from rat embryos, separated them to 
break any existing neural connections, and placed them on top of an 
8 × 8 grid outfitted with 60 electrodes. These electrodes were able to 
provide electrical inputs, receive outputs, and make possible the tracking 
of neural activity as the neurons established synaptic connections. This 
model, which could be metaphorically understood as a “brain” on a dish, 
provided data that the scientists were not able to characterize using known 
concepts and theory. In response, they built computational models of the 
dish models. This is characteristic of much scientific work: in response to 
epistemological and practical problems, the targets and models change 
together. With each iteration, the target of inquiry shifts, and overall, we 
claim, the scientists participated in a process of generative abstraction 
(see Fig. 6.1).

In more detail, the neurons in the dish would fire in response to elec-
trical stimuli. To understand how the dish “learned”, some kind of mean-
ingful patterns had to be discerned.

The in silico model, which might be considered a second- order model, 
was constructed initially by one researcher in an attempt to understand 
the spontaneous, dish- wide firing of the neurons (“burst” phenomena) 
that was occurring in the in vitro model and that they assumed was an 
impediment to progress in the lab’s research project of getting the dish 
to learn.

(Nersessian 2022, 107)

Nersessian claims that “this kind of second- order modeling of built 
prototypes (which we consider the in vitro dish to be) is a common engin-
eering investigative practice” (106). To overcome the difficulties of using 
the dish model, a participant in Nersessian’s study decided that a new 
representation was necessary; in his words,
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the advantage of modeling [computational] is that you can measure  
everything, every detail of the network......I felt that [computational]  
modeling could give us some information about the problem [bursting  
and control] we could not solve at the time [using the in vitro dish  
model- system].

(quoted on 115)

Nersessian points out that this scientist

felt that to understand the phenomena of bursting he needed to be able 
to “see” the dish activity at the level of individual neurons, to make 
precise measurements of variables such as synaptic strength, and to 

Figure 6.1  A process of generative abstraction. Each transition (from A to B, 
C, and D) involves abstraction in the subtractive sense but also 
introduces some idealizations and additional constraints to create the 
next vehicle of modelling. Taking up “learning” as our first target, 
we move to the rat brain; then we move away from the complexity 
and intricacies of the rat brain by dissociating rat neurons onto a 
dish –  the resulting arrangement of cells is easier to control and less 
complex; finally, the dish is simulated in the computer to yield even 
more control of the input parameters while providing access to the 
internal processes that possibly underpin the neural interactions rele-
vant for cognition. Each model shifts its target away from the original 
target of human learning (to learning in rats to behaviours of the dish, 
to the interaction of computational variables based on mathematical 
premises) and in so doing generates a new landscape of affordances, 
allowing scientists to pose new questions that were not possible for 
previous models.
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run more controlled experiments than could be conducted with the 
physical dish.

(115)

This participant’s long- term goal was to understand the behaviour of the 
neurons on the dish. But that behaviour, when translated into the com-
puter model, took on a life of its own. This is at least partially because 
the computer model had different constraints than the dish model. Some 
constraints were built into the computer model from the dish: e.g., an 8 
× 8 grid with 60 electrodes. Some came from the neuroscience literature, 
e.g., given 1000 neurons, theory predicted there should be about 50,000 
synaptic connections. Values for other parameters came directly from the 
literature, including values for conduction velocity, delay, noise level, 
and action potential effects, as well as information about which types of 
synapses there should be, how they should be connected, what percentage 
of the neurons should be excitatory and what percentage should be inhibi-
tory, and so on. Some constraints came from the modelling software, and 
finally, some became part of the model via the iterative process of model- 
building as the algorithm was tweaked and run over and over again until it 
produced behaviour similar to the behaviour observed in the dish.

Before going further, it is instructive to ask how we would charac-
terize what the scientist was doing in terms of the traditional definitions 
of abstraction and idealization. Clearly, the scientist was not merely 
abstracting in the subtractive sense. Of course, at various stages, details 
are removed. For example, empirical values are converted into ranges, and 
a three- dimensional brain structure is collapsed into a two- dimensional 
dish. But other details (e.g., from the neuroscience literature) are added. So 
the model is both more and less abstract in the subtractive sense, insofar 
as it contains more and less information about the target system. Are the 
scientists also idealizing? Presumably some idealizations had to be made, 
though Nersessian only mentions a few potential cases. For example, when 
building the computational model, a participant assumed that the neurons 
would be randomly distributed over the dish, and he admits not being 
sure if this is the case in the actual dish, though it looks “pretty random” 
through the microscope (117). Assumptions like this, made for compu-
tational tractability, are at least one potential source of idealizations. It 
therefore seems likely that we’ll be able to use the traditional concepts of 
abstraction and idealization to help understand what is going on here. But 
if we stopped there, we would be leaving out the importantly generative 
aspect of the story.

One way to characterize the generativity of this process is to focus on 
the different affordances of each model in the chain. The dish model, unlike 
ex vivo brain slices, was dynamic: it changed over time depending on the 
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inputs it received. The computational model was also dynamic, but in a 
different way: it could be run in infinitely many different configurations, 
paused, replayed, and restarted, at will. For example, synaptic connection 
strength, which is a measure of “learning” as they operationalized it, could 
be measured in the computer model at any time, though it could not be 
measured in the dish. Additionally, running experiments on the computer 
model came without any great cost of time or danger of killing the neurons 
living on the dish, which had to be painstakingly cared for.

Another way to appreciate the generativity here is to focus on how data 
from each model was visualized (see also Bolinska 2013, 2016; Vorms 2010, 
2011; Kulvicki 2010). For example, to understand the outputs of the com -
puter model, a visualization was built. As Nersessian points out, this could 
have been done in “any number of ways” including some that were very 
familiar to the research group. However, the participant built a new visual-
ization that was not yet used in the lab: he visualized the model as a network.

The behaviour of the in silico dish could now be shown to the entire 
research group, who quickly recognized that its behaviour was “novel and 
distinct from anything they had thus far understood about in vitro dishes” 
(121). This mode of visualization made new phenomena visible because the 
computer model tracked the activity of individual “neurons”, which made 
the propagation of neural activity more clearly visible. A number of “burst 
types” were then identified: “you get some feeling about what happens in 
the network –  and what I feel is that... the spontaneous activity or spon-
taneous bursts are very stable” (quoted on 121). This transformed the 
target of their research: before, bursts were noise; now, they are patterns 
to be investigated and employed. Around ten kinds of bursts were identi-
fied, and a new concept, the burst vector, was introduced. This became the 
new target: directional “waves” of “neural” “activation”. Importantly, 
the scientists “had the information always... the information was always 
there” (quoted on 126– 7), but it was hidden in the raw data. The computer 
model made it visible. This might be thought of analogously to an abstract 
artist who sees something worth investigating in the lines or shapes of a 
scene, and who produces a painting that brings that aspect out, aided (not 
frustrated) by the fact that the inspiring scene is no longer visible in the 
painting. The dynamic, functional qualities of the in vitro neural behav-
iour were brought out by the computer model in a way that allowed the 
researchers to “look inside the dish” (127).

At this point, someone might object that abstract art is supposed to be 
non- representational, and this computer model (like the dish model) is 
clearly representational. However, to repeat, abstract art is abstract in that 
it leaves behind the original inspiring visual target (if there was one). It can 
and often does make reference to new targets or systems of interest, which 
it might do by inventing targets of its own. So the question is not whether 
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this chain of models represents something but whether they represent the 
same thing all the way through.

Someone could claim that they all represent the same thing: “learning”. 
Despite this being the way scientists might frame their work in grant 
proposals or paper abstracts, “learning” is clearly not the main, or only 
target represented in all the models. We might think of the first target system 
as stable patterns of neural signalling including feedback loops in real brains. 
The second might be the same, in rat brains. The dish they used drew on 
single- neuron work as well as work on rat brain slices. They produced a 
physical dish model that was only one layer of neurons thick and fed by a 
bath of chemicals and kept to a uniform temperature. It only used cortical 
neurons, since these are the most adaptable. In the dish model, electrodes 
were attached to the neurons, and after about two weeks, neural circuits 
grew around these electrodes. The input the dish neurons received might 
simulate perception and haptic feedback, as the lab would connect the input 
and output to computer models of virtual environments or physical robots. 
For example, one dish was modelled after moths, as they tried to teach it to 
focus on a central “light” source (Nersessian 2022, 75, 128). Another was 
modelled after a human arm, which they gave a pen and a camera and tried 
to teach it to colour in between the lines. The target of the computer model 
was the behaviour of the dish model. This is clearly a different target than 
the behaviour of real brains. The computer model was further used to model 
the behaviour of the moth- dish, or the arm- dish, and was used successfully 
to “program” both. Clearly, this is an episode of scientific progress, despite 
it not being exhaustively characterizable as growing understanding about a 
single, original, target. The target moves, and this explains the difficulty that 
the scientists had in describing what the computational model was a model 
of. Their answers ranged from a model of learning, to a model of cortical 
neurons, to a model of itself (Nersessian 2012).

Further, the universalizing ambitions of early abstract artists can also be 
seen here, as the computer model helped to

form a global perspective on the phenomena –  a perspective that cannot 
be obtained from the more limited in vitro and real- world experimental 
possibilities of the target system. This global perspective is what informs 
the “feeling for the model,” that [the participant] expressed, and that is 
ubiquitous among modelers.

(Nersessian 2022, 134)

Nersessian calls the perspective “global” because the computational model 
offers something that can be applied much more broadly than to a particular 
brain- on- a- dish. It aims to reveal features of neural burst behaviour and 
neuronal networks more generally, just as abstract art aims to reveal features 
about emotion, experience, or aesthetic relationships more generally.
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We mentioned above that there are at least two ways to practice genera-
tive abstraction. The first is by gradually leaving the initial concrete target 
system behind, ending with a new artefact and a new target that is typically 
more general (or more conceptual, or more universal). The second way is to 
develop such a representation directly, without any initial concrete system 
to serve as the starting point from which information would be subtracted. 
Above we presented an example of the first sort. Examples of the second 
sort include some of those with no original concrete target system, like 
those in synthetic biology in which computational or material systems are 
built to have certain functions that are found in no living system (see, e.g., 
Knuuttila 2021; Knuuttila and Koskinen 2021; Knuuttila and Loettgers 
2021). One interesting case is the repressilator, which is a circuit of genes 
that turn each other on and off using proteins in a way that mimics the 
game of rock- paper- scissors. As in the case above, in attempting to under-
stand this model scientists built a computational model, as well as an 
electrical analogue that uses voltages to represent protein concentrations 
(Knuuttiila 2021). Other examples include minimal cells and alternative 
genetic systems. These systems likewise represent general ways things 
could be, without having been inspired by any particular concrete system 
(Knuuttila and Koskinen 2021). Perhaps we could also include exploratory 
models that target possible or hypothetical systems, like Maxwell’s ether 
model and supersymmetric particle models (Gelfert 2016; Massimi 2019). 
We think that all of these cases are well described as instantiating processes 
of generative abstraction. They are clearly abstract in some way, but not 
because they omit information about a particular system.7

One final point of clarification. We have defined generative abstractions 
in terms of new artifacts and new targets, but we want to be clear that 
each can be “new” in different ways. Thus, the new artifact is typically 
new in the sense of “previously not existing”. The target of representation 
(what the model “points at”) might be new in that sense, as in the min-
imal cell, but it could instead be new merely in the sense of being different 
from the original target. For example, abstract artists might produce a 
generative abstraction that refers to a feeling or state of being, while the 
neuroengineers above produced a generative abstraction that refers to 
neural behaviours, each of which already existed.8

6.5 Discussion

6.5.1 General Epistemological Considerations

In considering the epistemology of abstraction, philosophers have 
focused on a subtractive notion of abstraction. As a result, philosophers 
have pursued a preservative epistemology of abstraction. There are sev-
eral ways this could go. Here is one: abstraction is done properly when 
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the only features not abstracted away are the true “difference makers”. 
Thus, models should be as abstract as possible (as long as they capture 
all the relevant difference makers), so that they are maximally cognitively 
tractable for humans (e.g., Strevens 2008). On such an account, the best 
abstractions are those that don’t interfere with the truth, and which can 
easily be un- done.

We agree with Nersessian (2008), Leonelli (2008), Carrillo and 
Martínez (2023), and many of the contributors to this volume that sub-
tractive abstraction is not the only kind of abstraction relevant to scien-
tific model- building. One other important kind of abstraction is generative 
abstraction. This kind of abstraction is easy to spot when there are chains 
of connected models, especially in interdisciplinary contexts. Given the 
fact that generative abstraction is very different from subtractive abstrac-
tion, we should expect generative abstraction to require a different 
epistemology.

For one thing, generative abstractions, unlike subtractive abstractions, 
cannot be un- done. Adding information from the initial target system 
“back” into a model is not a sensible thing to do once the target has 
changed. This is even clearer in the case of generative abstract models that 
were not inspired by a particular concrete target system. For example, 
when scientists are trying to build cells that reveal how minimal a genome 
can be while maintaining core cellular functions, it would not be helpful to 
introduce information from a particular cell, like a human liver cell, into 
that minimal cell. Such information would not make the minimal cell a 
better representation of its target, which is the minimal cell. It would make 
it a worse representation of a minimal cell, because the extra information 
would make it less minimal.

Rather than staying true to some inspiring target system, generatively 
abstract models should be interesting as artefacts in themselves. They 
may still (come to) refer to things, and these things should be of scien-
tific interest. In the neuroscience case discussed above, the target shifted 
from the human brain to the rat brain to the dish model to the compu-
tational model. Unlike subtractive abstraction, which ideally increases 
understanding about the initial target system, generative abstraction 
explores new features, like bursts and burst vectors, which may or may 
not be found in the original target.

Generative abstraction is successful to the extent that it improves our 
epistemic standing with respect to the new target. Just as abstract artists 
manage to explore musical harmony (Kandinsky), feelings (Mondrian, 
Rothko), or religious themes (af Klint) via lines, shapes, and colours, 
scientists invent new systems with interesting properties, just as the com-
puter model discussed above enabled scientists to “see significant system 
behaviors” (Nersessian 2022, 137). But how is the process of generative 
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abstraction done well? What could we say to a scientist embarking on such 
a process? This is a difficult question. Often the abstractor might desire 
to leave the initial target behind without knowing what the final artefact 
should be or what the final target system should be. Or they might know 
what they want the final target to be, but they don’t know what to build 
in order to explore it.

Generative abstractions are useful because they enable scientists to break 
away from what may be a limiting focus on a particular target system. 
Because of this, the practitioner has a lot of flexibility in creating them. 
This might be frustrating for someone who wants to follow a set of rules 
to build a generative abstraction, but there cannot be such a set of rules. 
For Kandinsky, the process should be intuitive, as well as slow, careful, 
and rational: “Reason, consciousness, purpose, and adequate law play an 
overwhelming part. Yet, it is not to be thought of as a mere calculation, 
since feeling is the decisive factor” (Kandinsky 1977, 108, 109, 117, 123). 
For Malevich, it should be a completely rational process, carefully planned 
out from the beginning: “In constructing painterly forms it is essential to 
have a system for their construction, a law for the constructional inter- 
relationships of forms” (Malevich 1969, 100). However, Malevich never 
gave rules for such a system.

Unlike subtractive abstraction, where scientists can (in simple cases) 
chip away irrelevant information bit- by- bit until an explanatory kernel of 
dependency relations is revealed, scientists abstracting generatively must 
be permitted to move playfully, adding detail here, removing detail there, 
building up and breaking down, as they try to create something new that 
is interesting and useful. Nersessian argues that the choices they make are 
not necessitated: there are always many equally rational moves to make. 
All that is required is that each step of the model- building process must 
be justifiable from the present perspective. This way, the process may be 
rational, as Kandinsky, Mondrian, and Malevich demand, even without a 
foolproof method that could be specified in advance.

Perhaps this coheres best with a consequentialist epistemology. Such 
an account would judge a process of generative abstraction based on 
the epistemic quality of the output (Stuart 2022a, 2022b). What makes 
one output better than another? Generative abstraction is a way to build 
models, and models have many epistemic uses. So a process of generative 
abstraction will be better to the extent that it contributes to some epistemic 
aim, for example, providing a good starting point, providing a proof- of- 
principle demonstration, generating a potential explanation, leading to an 
assessment of the suitability of a target, delivering knowledge of causal 
possibilities, or delivering knowledge of objective possibilities for hypo-
thetical entities (see Gelfert 2016 and Massimi 2019). An internist version 
of this idea would claim that a process of generative abstraction has more 
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epistemic value to the extent that, as far as the abstractors can foresee, 
it would best promote some of the above epistemic aims. An externalist 
version would claim that a process of generative abstraction has more 
epistemic value to the extent that it really turns out to best promote such 
epistemic aims. It might also be possible to formulate a deontic epistem-
ology of generative abstraction, such that a process of generative abstrac-
tion is epistemically correct when each act that makes it up respects duties 
of maintaining representational accuracy or staying consistent with back-
ground knowledge. But given the artistic, experimental, and imaginative 
nature of generative abstraction, perhaps developing and obeying strict 
rules would not be the main way that scientists (should) perform and jus-
tify this kind of work (Stuart 2020).

Another way to explore the epistemic powers of generative abstrac-
tion is to make reference to existing epistemologies of scientific represen-
tation, which explain how representations produce new knowledge or 
understanding of their targets. While it would be interesting to see how this 
might go in detail for each account, doing so would not give any definite 
answer about how we should understand the epistemological contributions 
of generative abstraction until it was clear which of these accounts was the 
correct one. Thus, structuralists (e.g., da Costa and French 2003; Bueno, 
French, and Ladyman 2002) can explain successful generative abstractions 
by reference to homomorphisms, monomorphisms, isomorphisms, or par-
tial isomorphisms that obtain between the model and the new target. 
Inferentialists (e.g., Suárez 2004) can argue that generatively abstract 
models succeed when they enable correct inferences to be drawn about the 
new target. Each of these accounts produces explanations concerning how 
generative abstractions work, but which explanation is to be preferred 
depends on which account is correct, and that is still very much an open 
question.

However, it might be interesting to turn the question around and use the 
existence of generative abstraction as a test for accounts of representation. 
If generative abstraction is a genuine and important part of science, then 
accounts that have difficulty accommodating it face a challenge. Consider 
the two main kinds of fictionalist accounts of scientific representation. 
Fictionalists claim that a model is a fiction in the sense that it constrains 
“games of make believe” that we can play. To play such a game, we follow 
certain implicit and explicit rules, as well as “props” around which the 
game is focused. The model, or the model description, serves as a prop 
in the game, and our goal is to determine what else is true in the fiction. 
Indirect fictionalists claim that model descriptions inspire the creation of 
imaginary systems which can be explored and compared to a target system. 
These accounts are indirect in the sense that they claim we learn about the 
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real target system by means of a third thing, the imaginary system. We 
think that indirect fictionalist accounts like Frigg and Nguyen’s (2016, 
2020) can handle generative abstract models since the last stage of model- 
based reasoning in their view freely “keys up” properties instantiated in 
the imaginary system with properties that are to be attributed to the target, 
and as far as we can tell, nothing in their account prevents that target 
from being different than the initial target system on which the model was 
originally based. However, there are also direct fictionalists, who claim 
that the model is always about some real world target system. There is 
no “third thing”, no fictional system, through which our investigation 
detours. For example, a mathematical model of a pendulum is always and 
only about a specific desk pendulum, or the set of all actual pendulums 
(Toon 2012; Levy 2012, 2015). This seems to require that models created 
via abstraction must only tell us about some particular real- world target 
system. Generatively abstract models still count as representations on this 
account, as they prescribe imaginings in the context of a game of make 
believe. However, as scientists go through a process of generative abstrac-
tion in their model- building, they change target or produce new targets. 
When this happens, the resulting model becomes either a bad representa-
tion of the initial target, or we must ignore the process of model- building 
and simply say of the finished model that it represents the new target. 
The first option is unattractive because the process of generative abstrac-
tion can create better models, not just worse ones. And this improvement 
is substantial: generative abstraction helps scientists to achieve particular 
epistemic aims, like explanation, prediction, and opening up new theor-
etical possibilities. To ignore this and claim that any changes in the target 
inevitably make the model worse would be to ignore all the good reasons 
that scientists have for making generative abstractions. The second option 
is unattractive because attention to scientific practice makes it clear that 
very few models are really “complete” such that we can say once and for 
all what the “real” target is or should be. We want an account of scientific 
representation that can accommodate the flexibility and open- endedness 
of models and model- building practices. Genuinely moving targets there-
fore present a challenge to direct fictionalism as a descriptive and norma-
tive account of scientific practice.

6.5.2 Considerations for the Scientist

What consequences, if any, does the existence of generative abstraction 
have for the practicing scientist? One main consequence is that generative 
abstraction should be kept distinct from subtractive abstraction, even in 
the mind of the scientist. This is because the different kinds of abstraction 
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are justified in different ways, and scientists should keep track of which 
past scientific actions were justified and how.

Recall that subtractive abstraction can be used for generative purposes. 
This is because subtraction has a capacity to reconfigure a model, its 
workings, internal commitments, constraints, and representational 
relations to the target. Scientists should be aware that with enough sub-
tractive abstraction, they might find themselves generating. Once they 
have embarked down this path, a generative rather than preservative justi-
fication will be required, and employing only a preservative epistemology 
will yield incorrect evaluations of past practice.

To see how an abstraction can reconfigure the model landscape, let us 
look back at the dish model. From a theoretical perspective, moving from 
an intact rat brain to a dissociated rat brain seems like a mere abstraction 
of constraints or features that define the functioning of a brain, such as the 
quantity of connected neurons and their spatial organization. On the dish, 
we are dealing with a smaller number of neurons arranged in two rather 
than in three dimensions, so it is easier to study. Here, the problem is that 
subtraction in the theoretical sense may be not the same as in the material 
sense: what theoretically looks like removal of some constraints or features 
in fact results in a substitution of one set of constraints for another, which 
may reshape the behaviour of the model in an unanticipated way. On 
the positive side, new or unnoticed effects or phenomena may surface, 
such as the phenomenon of bursting; however, on the negative side, it may 
produce contingencies and artefacts that may not have anything to do with 
the original target. (They may still be interesting effects to study by them-
selves, and this is one source of generativity.)

One may reply that such a danger is only pertinent to abstractions 
in the case of material models. We disagree: subtractions can turn into 
reconfigurations also in the case of conceptual, mathematical, or compu-
tational models, because even if abstraction in the model may be theor-
etically tractable, its effect on what the target is, generally speaking, isn’t 
always foreseeable. There probably are no cases where we could guarantee 
that further subtractive abstraction would not lead to generative abstrac-
tion. Perhaps, instead, there are some contexts in which this is not a very 
serious epistemic risk. For example, as long as we have a firm intention 
to fix the target, and the model is relatively simple, the effects of greater 
and greater subtractive abstraction can be tracked. Common pedagogical 
uses of the mathematical model of the pendulum are one example. But 
such a situation seems to be an exception, not the norm, in the scientific 
practice of model- building and model- using. And this is why supposedly 
small subtractions in mathematical models or simulations might not work 
as innocently as one expects them to. Consequently, their effect cannot be 
just “un- done”: one may not know in advance if they abstract contingent 
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features of some real difference makers. Thus, subtraction should always 
come with evaluations of the effect of this subtraction, as cutting off 
the “wrong wire” may lead to (good or bad) unpredicted epistemic 
consequences, which require a new kind of epistemological justification. 
We are not suggesting that all generative abstractions must be planned 
in advance or done with conscious foresight. We are merely pointing out 
that generative abstraction and subtractive abstraction have different epi-
stemic features and yet one can easily lead to the other, so it would be 
epistemically irresponsible to pretend that subtractive abstraction alone 
exists, especially when the stakes are high. Scientists should keep track of 
their targets, even, or especially, when those targets are being brought into 
and out of existence.

6.6 Conclusion

Our main goal in this chapter has been to add to the existing repertoire of 
concepts for describing scientific practice. Generative abstraction is some-
thing that scientists do, and it is worth looking at more closely. Focusing 
on this sense of abstraction is helpful in celebrating the complexity of the 
practice of crafting scientific models. A secondary contribution is to con-
sider the epistemology of this way of model- building. One upshot is that 
“abstraction” is not always reversible, since only subtractive abstraction is 
(arguably) reversible. We could recover the traditional way of speaking by 
disqualifying generative abstraction as a kind of abstraction. But given the 
intuitively abstract nature of its outputs and its connection to abstract art, 
this would require argument.

Generative abstraction raises new questions. One is how generative 
abstraction relates to idealization. Do generative abstractions introduce 
intentional misrepresentations of their targets? In some cases, the model 
system will no longer function as a representation of a particular inspiring 
target system. Instead, it will become a target system. In that case, like 
the concrete abstractions discussed above, the model cannot misrepresent, 
since it only represents itself. For example, consider genetic variants of a 
model organism. Each new genotype has a specific (and different) part of 
the wildtype phenotype as its original target, yet it is studied for its own 
features and is not clearly a misrepresentation of anything. In other cases, 
a generative abstraction will require building a representational analogy 
base that starts from a particular concrete system, and as we noted above, 
this can include the use of idealizations. However, as the target of the model 
changes, what were once idealizations (in the sense of misrepresentations) 
can become accurate representations. What this suggests is that generative 
abstraction is not identical to idealization; however, much more can and 
should be said about this connection.
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A second question concerns the differences between generative abstrac-
tion in art and science. One interesting historical difference is that 
abstract art was sharply criticized for its idea that shapes and colours 
could really serve as a “universal language”. In science, the idea that gen-
erative abstractions are more universal might be appealing, since such 
models are typically more formal, more mathematical, and more likely to 
“travel” across disciplinary boundaries. There are surely other informative  
(dis)analogies between the two contexts that would be worth exploring.

A final question concerns whether generative abstraction arose first 
in art and then travelled into science, or vice versa, or whether it arose 
independently in both.9 A natural thought is that generative abstrac-
tion arose first in art. However, there are scientists who made generative 
abstract visualizations already in the 1890s, like W.E.B. DuBois, whose 
visualizations were said to “anticipate Kandinsky’s famous Bauhaus color 
and shape tests administered to his students decades later” (Battle- Baptiste 
and Rusert 2018, 97; Phull forthcoming).10 If the arrow of historical 
connection runs from science to art, this would help to explain why gen-
erative abstractions are found so readily in science. If it arose independ-
ently in both, this would suggest that similar problem- solution pairs arise 
in both science and art, which could support continuum theorists about 
science and art. In any case, exploring and comparing the history of gen-
erative abstraction in both science and art will be imperative for learning 
more about the kinds of problems that generative abstraction has been 
used to solve, and where it has been, and can be, more or less successful.
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Notes

 1 As Julia Sánchez- Dorado helpfully reminded us, Kandinsky himself rarely 
removed all traces of material objects, as such traces often served his goals as 
an abstract artist.

 2 Each of the four backs can be viewed via the Museum of Modern Art 
(New York). The first: www.moma.org/collection/works/ 80762?artist_  
id= 3832& page=1& sov_referrer=artist, the second: www.moma.org/ collection/  
works/81190, the third: www.moma.org/collection/works/80772, the fourth:  
www.moma.org/collection/works/80778
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 3 This image can be viewed through its current holder, Sotheby’s 
here: www.sothebys.com/en/auctions/ecatalogue/2018/impressionist-modern-  
art-evening-sale-n09930/lot.18.html

 4 See, for example, his Improvisation Auf Mahagoni (Improvisation on 
Mahogany), 1910, which can be viewed through its current holder, Sotheby’s, 
here: www.sothebys.com/en/auctions/ecatalogue/2018/impressionist-modern-  
art-evening-sale-n09930/lot.6.html

 5 For example, Avond: De rode boom (Evening: The red tree) (1908- 10), De 
grijze boom (Grey tree) (1911), Bloeiende appelboom (Blossoming Apple Tree)  
(1912). All three paintings can be viewed on the Hague Art Museum website:  
De rode boom (www.kunstmuseum.nl/en/collection/avond-evening-red-tree?  
origin=gm);  De grijze boom (www.kunstmuseum.nl/nl/collectie/de-  
grijze-boom?origin=gm); Bloeiende appelboom (www.kunstmuseum.nl/nl/  
collectie/bloeiende-appelboom-0)

 6 View this artwork here: www.tate.org.uk/art/artworks/mondrian-  
composition-b-no-ii-with-red-t07560

 7 Other examples of this second kind of generative abstraction might include the 
Kac ring model from statistical physics, and Norton’s Dome (Norton 2008). 
Both models could be understood as being created specifically to explore cer-
tain important theoretical possibilities, rather than particular concrete systems. 
For more interesting examples, see Costello, this volume.

 8 Thanks to Michela Massimi for prompting us to think more about this.
 9 For excellent work on this connection generally, see the entries in this volume 

by Sánchez- Dorado, and Tarja Knuuttila, Hanna Johansson and Natalia 
Carrillo.

 10 To view these visualizations, see the Library of Congress’s collection, here:  
www.loc.gov/pictures/item/2005679642/
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